2014 年天津市高考物理试卷解析版 参考答案与试题解析 一、单项选择题(每小题 6 分,共 30 分) 1.(6 分)质点做直线运动的速度﹣时间图象如图所示,该质点( ) A.在第 1 秒末速度方向发生了改变 B.在第 2 秒末加速度方向发生了改变 C.在前 2 秒内发生的位移为零 D.第 3 秒末和第 5 秒末的位置相同 【考点】1I:匀变速直线运动的图像.菁优网版权所有 【专题】512:运动学中的图像专题. 【分析】速度图象与时间轴围成的面积等于物体在该段时间内通过的位移,速度的正负 表示速度的方向,只要图象在时间轴同一侧物体运动的方向就没有改变;只要总面积仍 大于 0,位移方向就仍沿正方向; 【解答】解:A、0﹣2s 内速度图象在时间轴的上方,都为正,速度方向没有改变。故 A 错误; B、速度时间图象的斜率表示加速度,由图可知 1﹣3s 图象斜率不变,加速度不变,方向 没有发生改变,故 B 错误; C、根据“面积”表示位移可知,0﹣2s 内的位移为:x1 D、根据“面积”表示位移可知,0﹣3s 内的位移为:x1 2×2m=2m。故 C 错误; 2×2 m=1m, 0﹣5s 内的位移为:x2 2×1m=1m,所以第 3 秒末和第 5 秒末的位置相同。故 D 正 确。 故选:D。 第 1 页 共 17 页 【点评】深刻理解某一段时间内的位移就等于在该段时间内速度图象与时间轴围成的面 积是解决此类题目的突破口。 2.(6 分)如图所示,电路中 R1、R2 均为可变电阻,电源内阻不能忽略,平行板电容器 C 的极板水平放置,闭合电键 S,电路达到稳定时,带电油滴悬浮在两板之间静止不动, 如果仅改变下列某一个条件,油滴仍能静止不动的是( ) A.增大 R1 的阻值 B.增大 R2 的阻值 D.断开电键 S C.增大两板间的距离 【考点】BB:闭合电路的欧姆定律.菁优网版权所有 【专题】533:电容器专题. 【分析】分析清楚电路结构,求出极板间的电场强度,求出油滴受到的电场力,然后根 据电场力的表达式分析答题. 【解答】解:根据图示电路图,由欧姆定律可得:电容器两端电压:U=IR1 R1 ,油滴受到的电场力:F=qE=q 开始时油滴静止不动,F=mg,要使油滴保 持静止不动,则电场力应保持不变; A、增大 R1 的阻值,电场力:F 变大,电场力大于重力,油滴受到的合力向上, 不变,电场力与重力仍然是一对平衡力,油滴 油滴向上运动,故 A 错误; B、增大 R2 的阻值,电场力:F 静止不动,故 B 正确; C、增大两板间的距离,极板间的电场强度减小,电场力减小,小于重力,油滴受到的合 力向下,油滴向下运动,故 C 错误; 第 2 页 共 17 页 D、断开电键 S,极板间的电场强度为零,电场力为零,油滴受到重力作用,油滴向下运 动,故 D 错误。 故选:B。 【点评】本题考查了判断油滴的运动状态问题,分析清楚极板间的电场力如何变化是正 确解题的关键. 3.(6 分)研究表明,地球自转在逐渐变慢,3 亿年前地球自转的周期约为 22 小时,假设这 种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相 比( ) A.距地面的高度变大 C.线速度变大 B.向心加速度变大 D.角速度变大 【考点】4F:万有引力定律及其应用;4H:人造卫星.菁优网版权所有 【专题】52A:人造卫星问题. 【分析】卫星受到的万有引力充当向心力,根据公式即可分析同步卫星的各物理量的变 化情况. 【解答】解:A、因地球的周期在增大;故未来人类发射的卫星周期也将增大;根据万有 引力公式可知: m则有:R B、由 ;故卫星离地高度将变大;故 A 正确; ma 可知,因半径增大,则加速度减小;故 B 错误; C、由 m可知,v ,故线速度变小;故 C 错误; ;故角速度减小;故 D 错误。 D、由 mRω2 可知,ω 故选:A。 【点评】本题考查向心力公式及同步卫星的性质,要注意明确同步卫星的转动周期与地 球的自转周期相同. 4.(6 分)如图所示,平行金属板 A、B 水平正对放置,分别带等量异号电荷,一带电微粒 第 3 页 共 17 页 水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么( ) A.若微粒带正电荷,则 A 板一定带正电荷 B.微粒从 M 点运动到 N 点电势能一定增加 C.微粒从 M 点运动到 N 点动能一定增加 D.微粒从 M 点运动到 N 点机械能一定增加 【考点】AE:电势能与电场力做功;AK:带电粒子在匀强电场中的运动;CM:带电粒 子在混合场中的运动.菁优网版权所有 【专题】537:带电粒子在复合场中的运动专题. 【分析】微粒在平行金属板间受到重力与电场力的作用,根据微粒运动轨迹与微粒受到 的重力与电场力间的关系分析答题. 【解答】解:微粒在极板间受到竖直向下的重力作用与电场力作用,由图示微粒运动轨 迹可知,微粒向下运动,说明微粒受到的合力竖直向下,重力与电场力的合力竖直向下; A、如果微粒带正电,A 板带正电荷,微粒受到的合力向下,微粒运动轨迹向下,A 板带 负电,但如果电场力小于重力,微粒受到的合力向下,微粒运动轨迹向下,则 A 板既可 以带正电,也可能带负电,故 A 错误; B、如果微粒受到的电场力向下,微粒从 M 点运动到 N 点过程中电场力做正功,微粒电 势能减小,如果微粒受到的电场力向上,则电势能增加,故 B 错误; C、微粒受到的合力向下,微粒从 M 点运动到 N 点过程中合外力做正功,微粒的动能增 加,故 C 正确; D、微粒从 M 点运动到 N 点过程动能增加,重力势能减小,机械能不一定增加,故 D 错 误。 故选:C。 【点评】根据微粒的运动轨迹判断出微粒受到的合外力,然后根据微粒的受力情况分析 答题;电场力做正功,电势能减小,电场力做负功,电势能增加. 5.(6 分)平衡位置处于坐标原点的波源 S 在 y 轴上振动,产生频率为 50Hz 的简谐横波向 x 轴正、负两个方向传播,波速均为 100m/s,平衡位置在 x 轴上的 P、Q 两个质点随波源 第 4 页 共 17 页 振动着,P、Q 的 x 轴坐标分别为 xP=3.5m,xQ=﹣3m,当 S 位移为负且向﹣y 方向运 动时,P、Q 两质点的( ) A.位移方向相同,速度方向相反 B.位移方向相同,速度方向相同 C.位移方向相反,速度方向相反 D.位移方向相反,速度方向相同 【考点】F4:横波的图象;F5:波长、频率和波速的关系.菁优网版权所有 【专题】51D:振动图像与波动图像专题. 【分析】首先据题意和波速公式得出波长、周期;在画出波形图,结合 PQ 两点的坐标, 分析判断两点的振动情况. 【解答】解:据题境和波速 V=λf 得:λ=2m,T=0.02s,Q 关于 y 轴的对称点 Q1,据 题境可知两点的振动情况相同,则 Q1P 两点的距离之差为 ;质点P 据波源的距离为 时,波源 S 位移为负且向﹣y 方向运动时,所以质点 P 的位移为负且向上运动;由因为 Q1P 两点的距离之差为 ,所以Q1 的位移为正且向上运动,即 PQ 两点的位移方向相反, 振动方向沿 y 轴的正方向,故 ABC 错误,D 正确。 故选:D。 【点评】首先找出对称点,使两点都在坐标轴的一半轴,再据其距离和波源的距离分析 振动情况是解题的关键. 二、不定项选择题(每小题 6 分,共 18 分) 6.(6 分)下列说法正确的是( ) A.玻尔对氢原子光谱的研究导致原子的核式结构模型的建立 B.可利用某些物质在紫外线照射下发出荧光来设计防伪措施 C.天然放射现象中产生的射线都能在电场或磁场中发生偏转 D.观察者与波源互相远离时接收到波的频率与波源频率不同 【考点】FC:多普勒效应;J3:玻尔模型和氢原子的能级结构;JA:原子核衰变及半衰 期、衰变速度.菁优网版权所有 【专题】54O:衰变和半衰期专题. 【分析】卢瑟福 α 粒子散射实验提出原子核式结构模型,紫外线可以使荧光物质发出荧 第 5 页 共 17 页 光,γ 射线不能在电场或磁场中发生偏转,多普勒效应是由于观察者和波源间位置的变 化而产生的. 【解答】解:(1)A、卢瑟福通过 α 粒子散射实验建立了原子核式结构模型,故 A 错误; B、紫外线可以使荧光物质发出荧光,利用这一特性对钞票或商标进行有效的防伪措施, 故 B 正确; C、天然放射现象中产生的 γ 射线不能在电场或磁场中发生偏转,故 C 错误; D、当波源与观察者有相对运动时,如果二者相互接近,间距变小,观察者接收的频率增 大,如果二者远离,间距变大,观察者接收的频率减小。故 D 正确。 故选:BD。 【点评】本题考查了原子核式结构模型、紫外线的特征,多普勒效应等知识点,属于熟 记内容,难度不大,属于基础题. 7.(6 分)如图 1 所示,在匀强磁场中,一矩形金属线圈两次分别以不同的转速,绕与磁感 线垂直的轴匀速转动,产生的交变电动势图象如图 2 中曲线 a,b 所示,则( ) A.两次 t=0 时刻线圈平面均与中性面重合 B.曲线 a、b 对应的线圈转速之比为 2:3 C.曲线 a 表示的交变电动势频率为 25Hz D.曲线 b 表示的交变电动势有效值为 10V 【考点】E3:正弦式电流的图象和三角函数表达式;E4:正弦式电流的最大值和有效值、 周期和频率.菁优网版权所有 【专题】53A:交流电专题. 【分析】根据图象可分别求出两个交流电的最大值以及周期等物理量,然后进一步可求 出其瞬时值的表达式以及有效值等。 【解答】解:A、在 t=0 时刻,线圈一定处在中性面上;故 A 正确; 第 6 页 共 17 页 B、由图可知,a 的周期为 4×10﹣2s;b 的周期为 6×10﹣2s,则由 n 期成反比,故转速之比为: ;故B 错误; 可知,转速与周 C、曲线 a 的交变电流的频率 f D、由 Em=NBSω 可知 25Hz;故 C 正确; ,所以 Emb Ema=10V,曲线 b 表示的交 变电动势有效值为 U 故选:AC。 5V;故 D 错误; 【点评】本题考查了有关交流电描述的基础知识,要根据交流电图象正确求解最大值、 有效值、周期、频率、角速度等物理量。 8.(6 分)一束由两种频率不同的单色光组成的复色光从空气射入玻璃三棱镜后,出射光分 成 a、b 两束,如图所示,则 a、b 两束光( ) A.垂直穿过同一块平板玻璃,a 光所用的时间比 b 光长 B.从同种介质射入真空发生全反射时,a 光临界角比 b 光的小 C.分别通过同一双缝干涉装置,b 光形成的相邻亮条纹间距小 D.若照射同一金属都能发生光电效应,b 光照射时逸出的光电子最大初动能大 【考点】H3:光的折射定律;H5:全反射;IE:爱因斯坦光电效应方程.菁优网版权所有 【专题】54D:光的折射专题. 【分析】根据光线的偏折程度判断折射率的大小,即可判断出光束频率的大小;根据 v 分析光束在介质中传播的速度大小;根据公式 sinC 分析临界角的大小.根据干涉条纹 第 7 页 共 17 页 的间距关系可确定条纹间距;由光电效应方程可确定光电子的动能. 【解答】解:由图可知,a 光的偏折角大于 b 光的偏折角,故说明 a 光的折射率大于 b 光 的折射率;故说明 a 光的频率大于 b 光的频率,a 光的波长小于 b 光,在介质中 a 光的波 速小于 b 光; A、垂直穿过同一块玻璃时,不会发生折射,则经过的距离相同;因 a 光的波速小;故 a 光所用的时间长;故 A 正确; B、由 sinC C、由 x 可知,a 光的临界角要小于 b 光的临界角;故 B 正确; λ 可知,a 光的干涉条纹小于 b 光的干涉条纹;故 C 错误; D、由 EK=hγ﹣W0;由于 b 光的频率小,故 b 光光子能量小,则 b 光照射时逸出的光电 子最大初动能要小;故 D 错误。 故选:AB。 【点评】本题充分体现了选修内容的出题原则,一个题目中包含了多个知识点;要注意 明确光的干涉、光电效应、全反射等内容的综合应用. 三、实验题 9.(4 分)半径为 R 的水平圆盘绕过圆心 O 的竖直轴匀速转动,A 为圆盘边缘上一点,在 O 的正上方有一个可视为质点的小球以初速度 v 水平抛出时,半径 OA 方向恰好与 v 的方 向相同,如图所示,若小球与圆盘只碰一次,且落在 A 点,重力加速度为 g,则小球抛 出时距 O 的高度 h= 3…) . ,圆盘转动的角速度大小 ω= (n=1、2、 【考点】43:平抛运动;47:匀速圆周运动.菁优网版权所有 【专题】519:匀速圆周运动专题. 【分析】小球做平抛运动,小球在水平方向上做匀速直线运动,在竖直方向做自由落体 第 8 页 共 17 页 运动,根据水平位移求出运动的时间,根据竖直方向求出高度.圆盘转动的时间和小球 平抛运动的时间相等,在这段时间内,圆盘转动 n 圈. 【解答】解:小球做平抛运动,小球在水平方向上做匀速直线运动,则运动的时间 t 竖直方向做自由落体运动,则 h ,根据 ωt=2nπ 得: (n=1、2、3…) 故答案为: ;(n=1、2、3…). 【点评】解决本题的关键知道平抛运动在水平方向上做匀速直线运动,在竖直方向上做 自由落体运动,以及知道圆盘转动的周期性. 10.(8 分)某同学把附有滑轮的长木板平放在实验桌上,将细绳一端拴在小车上,另一端 绕过定滑轮,挂上适当的钩码,使小车在钩码的牵引下运动,以此定量探究绳拉力做功 与小车动能变化的关系,此外还准备了打点计时器及配套的电源、导线、复写纸、纸带、 小木块等,组装的实验装置如图所示. (1)若要完成该实验,必需的实验器材还有哪些 刻度尺、天平(包括砝码) . (2)实验开始时,他先调节木板上定滑轮的高度,使牵引小车的细绳与木板平行,他这 样做的目的是下列的哪个 D (填字母代号) A.避免小车在运动过程中发生抖动 B.可使打点计时器在纸带上打出的点迹清晰 C.可以保证小车最终能够实现匀速直线运动 D.可在平衡摩擦力后使细绳拉力等于小车受的合力 (3)平衡摩擦力后,当他用多个钩码牵引小车时,发现小车运动过快,致使打出的纸带 上点数较少,难以选到合适的点计算小车速度,在保证所挂钩码数目不变的条件下,请 你利用本实验的器材提出一个解决办法: 可在小车上加适量的砝码 . (4)他将钩码重力做的功当做细绳拉力做的功,经多次实验发现拉力做功总是要比小车 动能增量大一些,这一情况可能是下列哪些原因造成的 CD (填字母代号). A.在接通电源的同时释放了小车 B.小车释放时离打点计时器太近 第 9 页 共 17 页 C.阻力未完全被小车重力沿木板方向的分力平衡掉 D.钩码做匀加速运动,钩码重力大于细绳拉力. 【考点】MJ:探究功与速度变化的关系.菁优网版权所有 【专题】13:实验题. 【分析】(1、2)根据该实验的实验原理、要求和减少误差的角度分析,平衡摩擦力作用 后,进行实验过程中需要用刻度尺测量纸带上点的距离,用天平测出小车的质量,需要 改变砝码的质量来代替小车的拉力.(2)、(3)根据 W=mgs 求出砂桶及砂的总重力做 功,根据匀变速直线运动的平均速度等于中点时刻的瞬时速度求 A、B 的速度,即可得 到动能的变化量,从而写出探究结果表达式,根据此表达式分析所需要的测量仪器. 【解答】解:(1)、根据本实验的实验原理是合外力所做的功等于动能的变化量,通过研 究纸带来研究小车的速度,利用天平测量小车的质量,利用砝码的重力代替小车的合外 力,所以需要刻度尺来测量纸带上点的距离和用天平测得小车的质量,即还需要刻度尺, 天平(带砝码). 故答案为:刻度尺;天平(带砝码) (2)、实验过程中,为减少误差,提高实验的精确度,他先调节木板上定滑轮的高度, 使牵引小车的细绳与木板平行,目的是消除摩擦带来的误差,即平衡摩擦力后,使细绳 的拉力等于小车的合力,故 ABC 错误,D 正确. 故选:D. (3)平衡摩擦力后,当他用多个钩码牵引小车时,发现小车运动过快,致使打出的纸带 上点数较少,即小车的加速度大,所以应减少小车的加速度,当小车的合力一定的情况 下,据牛顿第二定律可知,适当增大小车的质量,即在小车上加适量的砝码. 故答案为:在小车上加适量的砝码 (4)他将钩码重力做的功当做细绳拉力做的功,经多次实验发现拉力做功总是要比小车 动能增量大一些,从功能关系看出:该实验一定有转化为内能的,即试验 中有存在摩擦 力没有被平衡掉;还有该实验要求,只有当小车的质量远大于砝码的质量时,小车的拉 力才近似等于砝码的重力,故 AB 错误,CD 正确. 第 10 页 共 17 页 故选:CD. 【点评】明确实验原理往往是解决实验问题的关键,该实验的一些操作和要求与探究力、 加速度、质量之间关系的实验类似可以类比学习. 11.(6 分)现要测量一个未知电阻 Rx 的阻值,除 Rx 外可用的器材有: 多用电表(仅可使用欧姆档); 一个电池组 E(电动势 6V) 一个滑动变阻器 R(0﹣20Ω,额定电流 1A); 两个相同的电流表 G(内阻 Rg=1000Ω,满偏电流 Ig=100μA); 两个标准电阻(R1=29000Ω,R2=0.1Ω); 一个电键 S、导线若干. (1)为了设计电路,先用多用电表的欧姆档粗测未知电阻,采用“×10”挡,调零后测 量该电阻,发现指针偏转非常大,最后几乎紧挨满偏刻度停下来,下列判断和做法正确 的是 AC (填字母代号). A.这个电阻阻值很小,估计只有几欧姆 B.这个电阻阻值很大,估计有几千欧姆 C.如需进一步测量可换“×1”挡,调零后测量 D.如需进一步测量可换“×1k”挡,调零后测量 (2)根据粗测的判断,设计一个测量电路,要求测量尽量准确并使电路能耗较小,画出 实验电路图,并将各元件字母代码标在该元件的符号旁. 【考点】N6:伏安法测电阻.菁优网版权所有 【专题】13:实验题. 【分析】(1)用多用电表的欧姆档粗测未知电阻,采用“×10”挡,调零后测量该电阻, 发现指针偏转非常大,说明档位太大,应改用小倍率档位,选档位后,重新欧姆调零 (2)利用提供的器材改装成电流表和电压表,要求电路能耗较小,结合电阻较小特点, 故采用限流接法 【解答】解:(1)A、用多用电表的欧姆档粗测未知电阻,采用“×10”挡,调零后测量 该电阻,发现指针偏转非常大,此时的刻度盘示数较小,故总阻值较小,故 A 正确. B、由 A 分析知,B 错误. C、应改用小倍率档位,选档位后,重新欧姆调零进行测量,故 C 正确. D、由 C 分析知,D 错误. 第 11 页 共 17 页 故选:AC; (2)利用提供的器材 R2 和 G 改装成电流表,用 R1 和 G 改装成电压表;要求电路能耗 较小,结合电阻较小特点,故采用限流接法,电路如图: 故答案为:(1)AC; (2) 【点评】欧姆表的使用规则和注意事项经常考查、电表的改装和电路设计经常考查 四、计算题 12.(16 分)如图所示,水平地面上静止放置一辆小车 A,质量 mA=4kg,上表面光滑,小 车与地面间的摩擦力极小,可以忽略不计,可视为质点的物块 B 置于 A 的最右端,B 的 质量 mB=2kg,现对 A 施加一个水平向右的恒力 F=10N,A 运动一段时间后,小车左 端固定的挡板与 B 发生碰撞,碰撞时间极短,碰后 A、B 粘合在一起,共同在 F 的作用 下继续运动,碰撞后经时间 t=0.6s,二者的速度达到 vt=2m/s,求 (1)A 开始运动时加速度 a 的大小; (2)A、B 碰撞后瞬间的共同速度 v 的大小; (3)A 的上表面长度 l。 【考点】52:动量定理;53:动量守恒定律.菁优网版权所有 【专题】52F:动量定理应用专题. 【分析】(1)由牛顿第二定律可以求出加速度; (2)由动量定理求出碰撞后的速度; (3)由动量守恒定律与动能定理可以求出 A 上表面的长度。 第 12 页 共 17 页 【解答】解:(1)以 A 为研究对象,由牛顿第二定律得: F=mAa, 代入数据得:a=2.5m/s2; (2)A、B 碰撞后共同运动过程中,选向右的方向为正,由动量定理得: Ft=(mA+mB)vt﹣(mA+mB)v, 代入数据解得:v=1m/s; (3)A、B 碰撞过程动量守恒,以 A 的初速度方向为正方向,由动量守恒定律得: mAvA=(mA+mB)v, A 从开始运动到与 B 发生碰撞前,由动能定理得: Fl mAvA2﹣0, 联立并代入数据得:l=0.45m; 答:(1)A 开始运动时加速度 a 的大小为 2.5m/s2; (2)A、B 碰撞后瞬间的共同速度 v 的大小为 1m/s; (3)A 的上表面长度为 0.45m。 【点评】本题考查了求加速度、速度、A 的长度问题,分析清楚物体运动过程,应用牛 顿第二定律、动量定理、动量守恒定律、动能定理即可正确解题。 13.(18 分)如图所示,两根足够长的平行金属导轨固定在倾角 θ=30°的斜面上,导轨电 阻不计,间距 L=0.4m。导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线 为 MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁 场的磁感应强度大小为 B=0.5T.在区域Ⅰ中,将质量 m1=0.1kg,电阻 R1=0.1Ω 的金 属条 ab 放在导轨上,ab 刚好不下滑。然后,在区域Ⅱ中将质量 m2=0.4kg,电阻 R2= 0.1Ω 的光滑导体棒 cd 置于导轨上,由静止开始下滑,cd 在滑动过程中始终处于区域Ⅱ 的磁场中,ab、cd 始终与导轨垂直且两端与导轨保持良好接触,取 g=10m/s2,问 (1)cd 下滑的过程中,ab 中的电流方向; (2)ab 将要向上滑动时,cd 的速度 v 多大; (3)从 cd 开始下滑到 ab 刚要向上滑动的过程中,cd 滑动的距离 x=3.8m,此过程中 ab 上产生的热量 Q 是多少。 第 13 页 共 17 页 【考点】D9:导体切割磁感线时的感应电动势;DD:电磁感应中的能量转化.菁优网版权所有 【专题】11:计算题;32:定量思想;43:推理法;53C:电磁感应与电路结合. 【分析】(1)由右手定则可以判断出感应电流方向; (2)由平衡条件、安培力公式求出 cd 棒的速度; (3)由能量守恒定律可以求出热量。 【解答】解:(1)由右手定则可知,电流由 a 流向 b; (2)开始放置 ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力, 由平衡条件得:Fmax=m1gsinθ, ab 刚好要上滑时,感应电动势:E=BLv, 电路电流:I ,ab 受到的安培力:F 安=BIL, 此时 ab 受到的最大静摩擦力方向沿斜面向下, 由平衡条件得:F 安=m1gsinθ+Fmax ,代入数据解得:v=5m/s; (3)cd 棒运动过程中电路产生的总热量为 Q 总 由能量守恒定律得:m2gxsinθ=Q 总 m2v2, ,ab 上产生的热量:Q 解得:Q=1.3J; Q 总, 答:(1)cd 下滑的过程中,ab 中的电流方向由 a 流向 b; (2)ab 刚要向上滑动时,cd 的速度 5m/s; (3)从 cd 开始下滑到 ab 刚要向上滑动的过程中,cd 滑动的距离 x=3.8m,此过程中 ab 第 14 页 共 17 页 上产生的热量 Q 是 1.3J。 【点评】本题是复杂的电磁感应现象,是电磁感应与力学知识的综合,分析导体棒的运 动情况,要抓住甲匀加速运动的过程中,外力与安培力大小相等。分别从力和能量两个 角度进行研究。 14.(20 分)同步加速器在粒子物理研究中有重要的作用,其基本原理简化为如图 1 所示的 模型.M、N 为两块中心开有小孔的平行金属板,质量为 m、电荷量为+q 的粒子 A(不 计重力)从 M 板小孔飘入板间,初速度可视为零.每当 A 进入板间,两板的电势差变为 U,粒子得到加速,当 A 离开 N 板时,两板的电荷量均立即变为零,两板外部存在垂直 纸面向里的匀强磁场,A 在磁场作用下做半径为 R 的圆周运动,R 远大于板间距离,A 经电场多次加速,动能不断增大,为使 R 保持不变,磁场必须相应的变化,不计粒子加 速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效 应,求 (1)A 运动第 1 周时磁场的磁感应强度 B1 的大小; (2)在 A 运动第 n 周的时间内电场力做功的平均功率 ;(3)若有一个质量也为 m、电荷量为+kq(k 为大于 1 的整数)的粒子 B(不计重力) 与 A 同时从 M 板小孔飘入板间,A、B 初速度均可视为零,不计两者间的相互作用,除 此之外,其他条件均不变,图 2 中虚线、实线分别表示 A、B 的运动轨迹,在 B 的轨迹 半径远大于板间距离的前提下,请指出哪个图能定性地反映 A、B 的运动轨迹,并经推 导说明理由. 【考点】AK:带电粒子在匀强电场中的运动;CI:带电粒子在匀强磁场中的运动.菁优网版权所有 【专题】537:带电粒子在复合场中的运动专题. 【分析】(1)对直线加速过程根据动能定理列式;对磁场中的圆周运动过程根据牛顿第 二定律列式;最后联立求解即可; (2)A 运动第 n 周的时间内电场力做功为 qU;先根据动能定理求解该过程的速度,然 后根据线速度的定义公式求解时间;最后根据平均功率的定义求解平均功率; 第 15 页 共 17 页 (3)先根据动能定理判断粒子速度关系,然后根据 R 判断轨道半径关系. 【解答】解:(1)设 A 经电场第 1 次加速后速度为 v1,由动能定理得: qU ①A 在磁场中做匀速圆周运动,所受洛伦兹力提供向心力,故: qv1B1=m ②由①②解得: B1 ③(2)设 A 经过 n 次加速后的速度为 vn,由动能定理,得到: nqU ④设 A 做第 n 次圆周运动的周期为 Tn,有: Tn ⑤设在 A 做第 n 周运动的时间内,电场力做功为 Wn,则: Wn=qU ⑥在该段时间内,电场力做功的平均功率为: ⑦由④⑤⑥⑦解得: ⑧(3)A 图能够定性反映 A、B 运动的轨迹. A 经过 n 次加速后,设其对应的磁感应强度为 Bn,A、B 的周期分别为 Tn、T′,综合②⑤ 式并分别应用 A、B 的数据得到: Tn 第 16 页 共 17 页 T′ 由上可知,Tn 是 T′的 k 倍,所以 A 每次绕行 1 周,B 就绕行 k 周.由于电场只在 A 通 过时存在,故 B 仅在与 A 同时进入电场时才被加速. 经过 n 次加速后,A、B 的速度分别为 vn 和 vn′,考虑到④式,有: 由题设条件并考虑到⑤式,对 A 有: Tnvn=2πR 设 B 的轨迹半径为 R′,有: T′vn′=2πR′ 比较上述两式得到: R′ ,上式表明,运动过程中 B 的轨迹半径始终不变; 由以上分析可知,两个粒子运动的轨迹如题图 A 所示; 答:(1)A 运动第 1 周时磁场的磁感应强度 B1 的大小为 ;(2)在 A 运动第 n 周的时间内电场力做功的平均功率 (3)粒子 A、B 的运动轨迹如图 A 所示. 为;【点评】本题关键是明确同步加速器的工作原理,然后结合动能定理、牛顿第二定律、 电功率定义和几何关系列式分析,不难. 第 17 页 共 17 页
声明:如果本站提供的资源有问题或者不能下载,请点击页面底部的"联系我们";
本站提供的资源大部分来自网络收集整理,如果侵犯了您的版权,请联系我们删除。