2021年全国高考甲卷数学(理)试题(解析版)下载

2021年全国高考甲卷数学(理)试题(解析版)下载

  • 最近更新2022年10月14日



绝密★启用前 2021 年普通高等学校招生全国统一考试(甲卷) 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动, 用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上 无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符 合题目要求的.  1 M  x 0  x  4 ,N  x  x  5 M  N   1 1. 设集合 ,则 ()31 x 0  x  x x  4 A. C. B. 33x 4  x  5 x 0  x  5 D. 【答案】B 【解析】 【分析】根据交集定义运算即可 11M  N  x|  x  4 M {x | 0  x  4}, N {x |  x  5} 【详解】因为 ,所以 ,33故选:B. 【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解. 2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得 到如下频率分布直方图: 根据此频率分布直方图,下面结论中不正确的是( )A. 该地农户家庭年收入低于 4.5 万元的农户比率估计为 6% B. 该地农户家庭年收入不低于 10.5 万元的农户比率估计为 10% C. 估计该地农户家庭年收入的平均值不超过 6.5 万元 D. 估计该地有一半以上的农户,其家庭年收入介于 4.5 万元至 8.5 万元之间 【答案】C 【解析】 【分析】根据直方图的意义直接计算相应范围内的频率,即可判定 ABD,以各组的中间值作为代表乘以相应 的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定 C. 【详解】因为频率直方图中的组距为 1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可 作为总体的相应比率的估计值. 该地农户家庭年收入低于 4.5 万元的农户的比率估计值为 该地农户家庭年收入不低于 10.5 万元的农户比率估计值为 ,故 A 正确; 0.02  0.04  0.06  6% ,故 B 正确; 0.04  0.023  0.10 10% 该地农户家庭年收入介于 4.5 万元至 8.5 万元之间的比例估计值为 ,故 D 正确; 0.10  0.14  0.202  0.64  64%  50% 该地农户家庭年收入的平均值的估计值为 30.02  40.04  50.10  60.14  70.20 80.20  90.10 100.10 110.04 120.02 130.02 140.02  7.68 (万元),超过 6.5 万元,故 C 错误. 综上,给出结论中不正确的是 C. 故选:C. 【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率 的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均 频率 值的估计值.注意各组的频率等于 .组距 组距 2z  3. 已知 ,则 ()(1 i) z  3 2i 323331 i 1 i  i  i A. B. C. D. 222【答案】B 【解析】 3 2i 2i z  【分析】由已知得 ,根据复数除法运算法则,即可求解. 【详解】(1 i)2 z  2iz  3 2i ,3 2i (3 2i)i 2  3i 3z   1 i .2i 2i i 22故选:B. 4. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录 L  5 lgV 视力数据,五分记录法的数据 L 和小数记录表的数据 V 的满足 .已知某同学视力的五分记录法 的数据为 4.9,则其视力的小数记录法的数据为( )(10 )10 1.259 A. 1.5 B. 1.2 C. 0.8 D. 0.6 【答案】C 【解析】 L,V lgV ,再用指数表示 ,即可求解. 【分析】根据 关系,当 L  4.9 时,求出 VL  5 lgV lgV  0.1 【详解】由 ,当 L  4.9 时, ,1V  100.1  10  0.8 .110 10 110 则1.259 故选:C. F , F F PF 60, PF  3 PF ,则 C 的离心率为( 5. 已知 2 是双曲线 C 的两个焦点,P 为 C 上一点,且 11212)713 A. B. C. D. 713 22【答案】A 【解析】 PF , PF 【分析】根据双曲线的定义及条件,表示出 ,结合余弦定理可得答案. 12PF  3 PF PF  PF  2 PF  2a 【详解】因为 ,由双曲线的定义可得 ,12122PF  a PF  3a ,所以 因为 ;21222F PF 60 ,由余弦定理可得 ,4c  9a  a  23aacos60 12c2 a2 7722整理可得 2 ,所以 ,即 .e  4c  7a e  42故选:A a,c 【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立 间的等量关系是求解的关键. 6. 在一个正方体中,过顶点 A 的三条棱的中点分别为 E,F,G.该正方体截去三棱锥 后,所得多 AEFG 面体的三视图中,正视图如图所示,则相应的侧视图是( ) A. B. C. D. 【答案】D 【解析】 【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断. 【详解】由题意及正视图可得几何体的直观图,如图所示, 所以其侧视图为 故选:D aSq  0 S  n7. 等比数列 的公比为 q,前 n 项和为 n ,设甲: ,乙: 是递增数列,则( )nA. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件 C. 甲是乙的充要条件 D. 甲既不是乙的充分条件也不是乙的必要条件 【答案】B 【解析】 q  0 Sa  0 【分析】当 时,通过举反例说明甲不是乙的充分条件;当 是递增数列时,必有 成立即可 nnq  0 说明 成立,则甲是乙的必要条件,即可选出答案. 2,4,8, q  0 【详解】由题,当数列 为时,满足 ,S但是 不是递增数列,所以甲不是乙的充分条件. nSa  0 q  0 q  0 若 是递增数列,则必有 成立,若 不成立,则会出现一正一负的情况,是矛盾的,则 nn成立,所以甲是乙的必要条件. 故选:B. 【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过 程. 8. 2020 年 12 月 8 日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为 8848.86(单位:m),三角高程测量 法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有 A,B,C 三点,且 A,B,C 在同    A , B ,C   ,ACB  45 AB C 60 一水平面上的投影 满足 .由 C 点测得 B 点的仰角为15 ,BB    A B C   AA  CC 与CC 的差为 100;由 B 点测得 A 点的仰角为 ,则 A,C 两点到水平面 的高度差 约45 为( )( )3 1.732 A. 346 B. 373 C. 446 D. 473 【答案】B 【解析】 【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得 ,进而得到答案. A’B’ 【详解】 过故作,过 B作,CCH  BB’ BD  AA’ AA’CC ‘  AA’ BB’ BH  AA’ BB’100  AD 100 ,由题,易知△ADB 为等腰直角三角形,所以 .AD  DB 所以 因为 在.AA’CC ‘  DB 100  A’B’100 100 CH  C ‘B’  ,所以 BCH 15 tan15 中,由正弦定理得: A’B’C ‘ A’B’ C ‘B’ 100 100 ,sin 45 sin 75 tan15cos15 sin15 6  2 4而,sin15  sin(4530)  sin 45cos30 cos45sin30  21004 所以 所以 ,2A’B’  100( 31)  273 6  2 .AA’CC ‘  A’B’100  373 故选:B. 【点睛】本题关键点在于如何正确将 的长度通过作辅助线的方式转化为 .AA’CC ‘ A’B’100 2cos 2  sin   0, ,tan2  tan  9. 若 ,则 ()15 15 5515 3A. B. C. D. 53【答案】A 【解析】 sin 2 2sin cos 1tan 2  sin  【分析】由二倍角公式可得 ,再结合已知可求得 ,利用同角三 cos2 1 2sin2  4角函数的基本关系即可求解. cos 2 sin tan 2  【详解】 sin 2 2sin cos cos ,2 sin tan 2  cos2 1 2sin2  22sin 11  0, ,sin  ,cos  0 ,解得 ,1 2sin2  2 sin 415 sin cos 15 cos  1sin2   ,tan  .415 故选:A. 【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin 10. 将 4 个 1 和 2 个 0 随机排成一行,则 2 个 0 不相邻的概率为( .)13252345A. B. C. D. 【答案】C 【解析】 【分析】采用插空法,4 个 1 产生 5 个空,分 2 个 0 相邻和 2 个 0 不相邻进行求解. 【详解】将 4 个 1 和 2 个 0 随机排成一行,可利用插空法,4 个 1 产生 5 个空, C1  5 C2 10 若 2 个 0 相邻,则有 种排法,若 2 个 0 不相邻,则有 种排法, 5510 23所以 2 个 0 不相邻的概率为 故选:C. .510 AC  BC, AC  BC  1 11. 已如 A,B,C 是半径为 1 的球 O 的球面上的三个点,且 ,则三棱锥 O  ABC 的体积为( )2323A. B. C. D. 12 12 44【答案】A 【解析】 【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得 到平面 OABC 的距 离,进而求得体积.  AC  BC, AC  BC 1 【详解】 ,为等腰直角三角形, ,ABC  AB  2 2则设则ABC 外接圆的半径为 ,又球的半径为 1, 2到平面 的距离为 ,OABC d2 222,d  1  2211 1 VOABC  SABC d   11 3 2 22所以 .3212 故选:A. 【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面 距离的勾股关系求解. 2f x f x 2 x 1,2 f x1 12. 设函数  的定义域为 R, 为奇函数, )为偶函数,当 时, f (x)  ax  b 9  f 0  f 3  6 f.若     ,则 (  2  94375D. A. B. C. 224【答案】D 【解析】 f x 2 f x 2×2  2 f x1 【分析】通过 是奇函数和 是偶函数条件,可以确定出函数解析式   ,进 而利用定义或周期性结论,即可得到答案. f x 1   f x1 f x1 【详解】因为 是奇函数,所以 ①; f x 2 f x 2  f x  2 ②. 因为 是偶函数,所以 f 0   f 2  4a  b   f 3  f 1  a  b 令,由①得:   ,由②得:     ,x 1 f 0  f 3  6 因为      4a  b  a  b  6  a  2 ,所以 ,f 1   f 1  f 1  0  b  2 f x 2×2  2 令,由①得:       ,所以   .x  0 思路一:从定义入手. 95251  f f  2  f  2  f    2  22123325  f   f  1   f 1   f   22  5113     f   f  2   f  2 = f     2  222  9352    f  f 所以 .    2  2  思路二:从周期性入手 由两个对称性可知,函数  的周期 f x .T 4 91352      f f   f 所以 .      2  2  2  故选:D. 【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计 算的效果. 二、填空题:本题共 4 小题,每小题 5 分,共 20 分. 2x 1 x  2 1,3 处的切线方程为__________. y  13. 曲线 在点 5x  y  2  0 【答案】 【解析】 【分析】先验证点在曲线上,再求导,代入切线方程公式即可. y  3 【详解】由题,当 时, ,故点在曲线上. x  1 2 x  2  2x 1   5y  y |  5 求导得: ,所以 .22x1 x  2 x  2 5x  y  2  0 故切线方程为 .5x  y  2  0 故答案为: .a  3,1 ,b  1,0 ,c  a  kb k  ,则 ________. 14. 已知向量 .若 a  c 10 【答案】 【解析】 .3【分析】利用向量的坐标运算法则求得向量 的坐标,利用向量的数量积为零求得 的值 cka  3,1 ,b  1,0 ,c  a  kb  3 k,1 【详解】 ,  10 3a  c,ac  3 3 k 11 0 k   ,解得 ,10 3故答案为: .【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量 p  x , y ,q  x , y x x y y 0 .1  2 垂直的充分必要条件是其数量积 12121 2 2xy2 F , F 的两个焦点,P,Q 为 C 上关于坐标原点对称的两点,且 15. 已知 2 为椭圆 C: 1 116 4PQ  F F2 PFQF 2 的面积为________. 1,则四边形 1【答案】 【解析】 8mn ,四 PF  PF | PF | m,| PF | n ,利用勾股定理结合 m  n  8 ,求出 【分析】根据已知可得 2 ,设 112mn 2 面积等于 PFQF 边形 ,即可求解. 1P,Q 【详解】因为 为上关于坐标原点对称的两点, C| PQ || F F| PFQF 2 为矩形, 且设,所以四边形 12122| PF | m,| PF | n ,则 ,m  n  8,m  n  48 12所以64  (m  n)2  m2  2mn  n2  48  2mn PFQF ,,即四边形 面积等于 . 2mn  8 81故答案 为: . 8f x 2cos(x ) 16. 已知函数   的部分图像如图所示,则满足条件 7  4  f (x)  f  f (x)  f  0 的最小正整数 x 为________.  43 【答案】2 【解析】 7 4 3f (x) f ( ), f ( )的值,然后求解三角不等式可得最小 【分析】先根据图象求出函数 的解析式,再求出 正整数或验证数值可得. 3413  3 2 T  T    【详解】由图可知 ,即 ,所以 ;  2 12 343262      由五点法可得 ,即 ;6f (x)  2cos 2x  所以 .7 4 3 3 2f ( )  2cos  1 f ( ) 2cos , 0 因为 ;7 44 3f (x) 1 f (x)  0 ( f (x)  f ( ))( f (x)  f ( )) 0 所以由 可得 或;626f 1  2cos 2 因为    2cos 1 ,所以, 6f (x)  0 cos 2x   0 方法一:结合图形可知,最小正整数应该满足 ,即 ,3 635 6 x  k  x  k ,k Z 解得 ,令 ,可得 ,k  0 x可得 的最小正整数为2. 6x,符合题意,可得 f (x)  0 f (2)  2cos 4  0 方法二:结合图形可知,最小正整数应该满足 ,又 的最小正整数为 2. 故答案为:2. 【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解 ,根据特殊点求解 .三、解答题:共 70 分.解答应写出交字说明、证明过程或演算步骤,第 17~21 题为必考题, 每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别 用两台机床各生产了 200 件产品,产品的质量情况统计如下表: 一级品 150 二级品 50 合计 200 200 400 甲机床 乙机床 合计 120 80 270 130 (1)甲机床、乙机床生产的产品中一级品的频率分别是多少? (2)能否有 99%的把握认为甲机床的产品质量与乙机床的产品质量有差异? n(ad bc)2 附: K2  (ab)(cd)(ac)(bd) P K2  k 0.050 0.0100.001 k3.841 6.635 10.828 【答案】(1)75%;60%; (2)能. 【解析】 【分析】本题考查频率统计和独立性检验,属基础题,根据给出公式计算即可 150 200  75% 【详解】(1)甲机床生产的产品中的一级品的频率为 ,120  60% 乙机床生产的产品中的一级品的频率为 .200 2400 15080 12050 400 2(2) ,K  10  6.635 270130200200 39 故能有 99%的把握认为甲机床的产品与乙机床的产品质量有差异. aSa18. 已知数列 的各项均为正数,记 n 为 的前 n 项和,从下面①②③中选取两个作为条件,证明另 nn外一个成立. aSn a  3a ①数列 是等差数列:②数列 是等差数列;③ .注:若选择不同的组合分别解答,则按第一个解答计分. n21【答案】答案见解析 【解析】 a , S aaSn 【分析】选①②作条件证明③时,可设出 ,结合 n 的关系求出 n ,利用 是等差数列可证 nna  3a ;21Sn 选①③作条件证明②时,根据等差数列的求和公式表示出 ,结合等差数列定义可证; a , S an 的关系求出 n ,根据 a  3a anS  an  b 选②③作条件证明①时,设出 ,结合 可求 ,然后可证  bn21n是等差数列. 【详解】选①②作条件证明③: 2S  an  b(a  0) 设当当,则 S  an  b ,nn2n 1时, a  S  a  b ;1122 a 2an  a  2b n  2 时, an  Sn  Sn1  an  b  an  a  b ;2a因为 也是等差数列,所以 a  b  a 2a  a  2b ,解得 ;b  0 na  a2 2n 1 a  3a 所以 ,所以 .n21选①③作条件证明②: a  3a a因为 , 是等差数列, 21nd  a  a  2a 所以公差 所以 ,211n n1 2S  a n ,即 ,Sn  na1  d  n a1 n12Sn1  S  a n1  a n  a 因为 所以 ,1  n11Sn 是等差数列. 选②③作条件证明①: 2S  an  b(a  0) 设,则 S  an  b ,nn2当n 1时, a  S  a  b ;1122 a 2an  a  2b 当n  2 时, an  Sn  Sn1  an  b  an  a  b ;4a 1 ,所以 a 3a  2b  3 a  b 2 ,解得 或;a  3a b   因为 b  0 23a  a2 ,a  a2 2n 1 aa -an-1  2a2 当时, ,当 n  2 时, 满足等差数列的定义,此时 为等差 b  0 1nnn数列; 4a 4ab   S  an  b=an  a S   0 当时, ,不合题意,舍去. n1333a综上可知 为等差数列. n【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等 差数列的证明通常采用定义法或者等差中项法. ABC  A B C AA B B CC 和 1 的中 19. 已知直三棱柱 1 中,侧面 为正方形, ,E,F 分别为 AB  BC  2 AC 111 1 A B BF  A B 点,D 为棱 1 上的点. 11 1 (1)证明: ;BF  DE B D BB C C 与面 1 1 (2)当 为何值时,面 所成的二面角的正弦值最小? DFE 11B D  【答案】(1)见解析;(2) 12【解析】 【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线 垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案. ABC  A B C BB  BB  AB ,所以 【详解】因为三棱柱 1 是直三棱柱,所以 底面 ABC 1111A B //AB BF  A B 因为 ,,所以 1,BF  AB 111BB  BF  B BCC B .1 1 又,所以 AB  平面 1BA, BC, BB 所以 1 两两垂直. x, y, z 轴建立空间直角坐标系,如图. BA, BC, BB 以B为坐标原点,分别以 1 所在直线为 B 0,0,0 ,A 2,0,0 ,C 0,2,0 ,B 0,0,2 ,A 2,0,2 ,C 0,2,2 1  1  1  所以 ,E 1,1,0 ,F 0,2,1 .D a,0,2 由题设 (). 0  a  2   BF  0,2,1 ,DE  1 a,1,2 (1)因为 ,  BF  DE  0 1 a  211 2  0 所以 ,所以 .BF  DE  (2)设平面 的法向量为 ,DFE m  x, y, z   EF  1,1,1 ,DE  1 a,1,2 因为 , x  y  z  0 m EF  0  所以 ,即 .1 a x y  2z  0 m DE  0 m  3,1 a,2  a 令,则 z  2  a  BCC B BA  2,0,0 因为平面 1 的法向量为 ,1BCC B 设平面 与平面 的二面角的平面角为 ,DEF 11  m BA 63cos   则当.2 2a2  2a 14 2a2  2a 14 m  BA 1227 2a  时, 取最小值为 ,2a  2a  4 236此时 取最大值为 .cos 327 22 63所以 此时 ,sin  1 min 331B D  .12D a,0,2 【点睛】本题考查空间向量的相关计算,能够根据题意设出 弦值最大,找到正弦值最小是关键一步. (),在第二问中通过余 0  a  2 OP  OQ 20. 抛物线 C 的顶点为坐标原点 O.焦点在 x 轴上,直线 l: 交 C 于 P,Q 两点,且 .已知 x 1 M 2,0 M 点,且 与 l 相切. M (1)求 C, 的方程; A , A , A A A A A A A M M (2)设 3 是 C 上的三个点,直线 ,3 均与 相切.判断直线 3 与 的位置关系, 121212并说明理由. 22【答案】(1)抛物线C : y2  x 【解析】 ,方程为 ;(2)相切,理由见解析 M (x  2)  y 1 P,Q 相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出 【分析】(1)根据已知抛物线与 x 1 p,即可求出 ;由圆 OP  OQ 坐标,由 与直线 相切,求出半径,即可得出结论; x 1 MA A A A , A A , A A A , A , A 3 斜率存在,由 3 三 1 2 (2)先考虑 2 斜率不存在,根据对称性,即可得出结论;若 112132A A , A A , A A A A , A A 与圆 1 21 2 点在抛物线上,将直线 3 斜率分别用纵坐标表示,再由 相切,得出 M12122y2  y3, y2  y y3 与 的关系,最后求出 A A 3 的距离,即可得出结论. 2点到直线 M1C : y2  2px( p  0), P(1, y ),Q(1,y ) 【详解】(1)依题意设抛物线 ,00  OP  OQ,OP OQ  1 y02  1 2p  0,2p  1 ,y2  x 所以抛物线 的方程为 C,M (0,2),M 与相切,所以半径为 , 1x 1 22M 所以 的方程为 ;(x  2)  y 1 A (x y ), A (x , y ), A (x , y ) (2)设 111222333A A A A 方程为 2若若2 斜率不存在,则 或x  3 ,x 1 11A A A (1,1) 方程为 ,根据对称性不妨设 ,x 1 121A则过 与圆 y 1 相切的另一条直线方程为 ,M1A此时该直线与抛物线只有一个交点,即不存在 3 ,不合题意; A A 若2 方程为 x  3,根据对称性不妨设 A (3, 3),A (3, 3), 1123A则过 与圆 A A 为1 3 相切的直线 ,My  3  (x  3) 13y1  y3 x1  x3 y1  y3 113k, y  0 又,A A3 3133  y3 x3 关于 轴对称, x  0, A (0,0) A A , A A ,此时直线 33132A A 所以直线 与圆 相切; M23A A , A A , A A 若直线 3 斜率均存在, 12132111k则A A2 1,kA A ,kA A 2 3 ,13y1  y2 y1  y3 y2  y3 1y  y  x  x A A 所以直线 2 方程为 ,111y1  y2 x  (y  y )y  y y 0 整理得 ,121 2 A A x  (y  y )y  y y 0 同理直线 3 的方程为 ,1131 3 A A x  (y  y )y  y y  0 直线 3 的方程为 ,22323| 2  y1 y2 | 1 (y1  y2 )2 相切,  1  A A 与圆 M12(y2 1)y2  2y y 3 y2  0 整理得 ,12121(y2 1)y2  2y y 3 y2  0 A A 与圆 相切,同理 M1313131(y2 1)y2  2y y  3 y2  0 y , y 所以 3 为方程 的两根, 21112y1 y12 1 3 y12 y12 1 y2  y3   , y2  y3  ,A A 到直线 3 的距离为: M23 y12 | 2  |y12 1 2y1 | 2  y2 y3 | 1 (y2  y3)2 21 ( )y12 1 | y12 1| (y12 1)2  4y12 y12 1  1 ,y12 1 A A 所以直线 与圆 相切; M23A A , A A A A 与圆 2 3 综上若直线 与圆 相切,则直线 相切. MM1213【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为 A A , A A y  y , y  y y3 与 1 关系, 只与纵坐标(或横坐标)有关;(2)要充分利用 3 的对称性,抽象出 121232y , y y3 的关系转化为用 1 表示. 把2xa 21. 已知 (1)当 且a  0 a 1 ,函数 .f (x)  (x  0) ax f x 时,求  的单调区间; a  2 y  f x  与直线 y 1 (2)若曲线 有且仅有两个交点,求 a 的取值范围. 220, , 1,e  e, .【答案】(1) 上单调递增; 上单调递减;(2) ln2 ln2 【解析】 【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性; y  f x  与直线 y 1 (2)利用指数对数的运算法则,可以将曲线 有且仅有两个交点等价转化为方程 ln x ln a ay  g x g x 的y  有两个不同的实数根,即曲线  与直线 有两个交点,利用导函数研究   xaln a ln a 1g x g x 0  单调性,并结合  的正负,零点和极限值分析  的图象,进而得到 ,发现这正好是 aea0  g a  g e g x .   ,然后根据  的图象和单调性得到 的取值范围 x2x 2  xln 2 x2 2x2x  x2 2x ln 2 f x , f x     【详解】(1)当 时, ,a  2 22x 4x 2x 222f ‘ x  0   f x 0 时,   f x 0 时,   x  0  x  x  令得,当 ,当 ,ln 2 ln 2 ln 2 22f x   0, , ∴函数 在上单调递增; 上单调递减; ln2 ln2 xa ax ln x ln a ln x 1 ax  xa  xln a  aln x  g x    (2) ,设函数 ,f x   xxa1 ln x x  e ,g x 0 ,令   g x 则在在,得   x2 0,e g x 0 g x   单调递增; 内,e, g x 0 g x ,上   单调递减; 1g x    g e  ,  max ex,当 趋近于 g 1  0   g x  又时,  趋近于 0, ay  f x  与直线 y 1 y  g x y  所以曲线 要条件是 a有且仅有两个交点,即曲线  与直线 有两个交点的充分必 ln a ln a 10  g a  g e 0  ,这即是     ,ae1,e  e, 所以 的取值范围是 .【点睛】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较 难试题,关键是将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象, 利用数形结合思想求解. (二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答.如果多做,则按所做的第 一题计分. [选修 4-4:坐标系与参数方程](10 分) xOy 22. 在直角坐标系 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 .  2 2cos (1)将 C 的极坐标方程化为直角坐标方程;   ,写出 Р 的轨迹 1 的参数方 1,0 C(2)设点 A 的直角坐标为 ,M 为 C 上的动点,点 P 满足 AP  2 AM C程,并判断 C 与 1 是否有公共点. 2x  3 2  2cos 2C【答案】(1) ;(2)P 的轨迹 的参数方程为 ( 为参数),C x  2  y  2 1y  2sin C与1 没有公共点. 【解析】 【分析】(1)将曲线 C 的极坐标方程化为 2x   cos, y  sin ,将 代入可得;   2 2 cos P x, y M2  2 cos, 2sin C(2)设 ,设 ,根据向量关系即可求得 P 的轨迹 1 的参数方程,求出 两圆圆心距,和半径之差比较可得. 【详解】(1)由曲线 C 的极坐标方程 2可得 ,  2 2cos   2 2 cos 2222x   cos, y  sin 将代入可得 ,即 ,x  y  2 2x x  2  y  2 22即曲线 C 的直角坐标方程为 ;x  2  y  2 P x, y M2  2 cos, 2sin (2)设 ,设 ,  AP  2 AM  x 1, y  2 2 2 cos 1, 2sin  2  2cos  2,2sin ,  x 1 2  2cos  2 y  2sin x  3 2  2cos y  2sin 则,即 ,x  3 2  2cos y  2sin C故 P 的轨迹 的参数方程为 ( 为参数) 12,0 C,曲线 的圆心为 3  2,0 曲线 C 的圆心为 ,半径为 ,半径为 2, 21,则圆心距为 ,3 2 23 2 2 2  2 两圆内含, C故曲线 C 与 1 没有公共点. 【点睛】关键点睛:本题考查参数方程的求解,解题的关键是设出 的参数坐标,利用向量关系求解. M[选修 4-5:不等式选讲](10 分) f (x)  x  2 , g(x)  2x  3  2x 1 23. 已知函数 .y  f x   y  g x (1)画出 和 的图像; f x a  g x (2)若  ,求 a 的取值范围. 11 a  【答案】(1)图像见解析;(2) 2【解析】 【分析】(1)分段去绝对值即可画出图像; y  f x 12ay  f x a A,4 (2)根据函数图像数形结和可得需将  向左平移可满足同角,求得 过时的值可求. 2  x, x  2 f (x)  x  2  【详解】(1)可得 ,画出图像如下: x  2, x  2 3234, x   12g(x)  2x  3  2x 1  4x  2, x  ,画出函数图像如下: 2124, x  f (x  a) | x  a  2 | (2) ,f x, g x 如图,在同一个坐标系里画出   图像, y  f x a y  f x a是 平移了 个单位得到, f (x  a)  g(x) y  f x 则要使 ,需将  向左平移,即 ,a  0 1111 52y  f x a A,4 |  a  2 | 4 a  当过时, ,解得 或(舍去), 22211 11 2y  f x a  则数形结合可得需至少将  向左平移 个单位, .2【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.

分享到 :
相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注