2019年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)下载

2019年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)下载

  • 最近更新2022年10月14日



2019 年全国统一高考数学试卷(文科)(新课标Ⅲ) 一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.(5 分)已知集合 A={﹣1,0,1,2},B={x|x2≤1},则 A∩B=(  ) A.{﹣1,0,1} 2.(5 分)若 z(1+i)=2i,则 z=(  ) A.﹣1﹣i B.﹣1+i B.{0,1} C.{﹣1,1} D.{0,1,2} C.1﹣i D.1+i 3.(5 分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是(  ) A. B. C. D. 4.(5 分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称 为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了 100 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过《红楼梦》的学 生共有 80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60 位,则该校阅读过《 西游记》的学生人数与该学校学生总数比值的估计值为(  ) A.0.5 5.(5 分)函数 f(x)=2sinx﹣sin2x 在[0,2π]的零点个数为(  ) A.2 B.3 C.4 D.5 B.0.6 C.0.7 D.0.8 6.(5 分)已知各项均为正数的等比数列{an}的前 4 项和为 15,且 a5=3a3+4a1,则 a3=(   )A.16 7.(5 分)已知曲线 y=aex+xlnx 在点(1,ae)处的切线方程为 y=2x+b,则(  ) C.a=e﹣1,b=1 D.a=e﹣1,b=﹣1 B.8 C.4 D.2 A.a=e,b=﹣1 B.a=e,b=1 8.(5 分)如图,点 N 为正方形 ABCD 的中心,△ECD 为正三角形,平面 ECD⊥平面 ABCD ,M 是线段 ED 的中点,则(  ) A.BM=EN,且直线 BM,EN 是相交直线 第 1 页(共 26 页) B.BM≠EN,且直线 BM,EN 是相交直线 C.BM=EN,且直线 BM,EN 是异面直线 D.BM≠EN,且直线 BM,EN 是异面直线 9.(5 分)执行如图的程序框图,如果输入的 ɛ 为 0.01,则输出 s 的值等于(  ) A.2﹣ B.2﹣ C.2﹣ D.2﹣ 10.(5 分)已知 F 是双曲线 C: ﹣=1 的一个焦点,点 P 在 C 上,O 为坐标原点. 若|OP|=|OF|,则△OPF 的面积为(  ) A. B. C. D. 11.(5 分)记不等式组 表示的平面区域为 D.命题 p:∃(x,y)∈D,2x+y≥ 9;命题 q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题 ①p∨q;②¬p∨q;③p∧¬q;④¬p∧¬q 这四个命题中,所有真命题的编号是(  ) A.①③ B.①② C.②③ D.③④ 12.(5 分)设 f(x)是定义域为 R 的偶函数,且在(0,+∞)单调递减,则(  ) A.f(log3 )>f(2 )>f(2 )第 2 页(共 26 页) B.f(log3 )>f(2 )>f(2 C.f(2 )>f(2 )>f(log3 D.f(2 )>f(2 )>f(log3 )))二、填空题:本题共 4 小题,每小题 5 分,共 20 分。 13.(5 分)已知向量 =(2,2), =(﹣8,6),则 cos< , >=  14.(5 分)记 Sn 为等差数列{an}的前 n 项和.若 a3=5,a7=13,则 S10=   .  . 15.(5 分)设 F1,F2 为椭圆 C: +=1 的两个焦点,M 为 C 上一点且在第一象限. 若△MF1F2 为等腰三角形,则 M 的坐标为 . 16.(5 分)学生到工厂劳动实践,利用 3D 打印技术制作模型.如图,该模型为长方体 ABCD ﹣A1B1C1D1 挖去四棱锥 O﹣EFGH 后所得的几何体,其中 O 为长方体的中心,E,F,G ,H 分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D 打印所用原料密度为 0.9g/cm3. 不考虑打印损耗,制作该模型所需原料的质量为 g. 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考 题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。 17.(12 分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将 200 只小 鼠随机分成 A、B 两组,每组 100 只,其中 A 组小鼠给服甲离子溶液,B 组小鼠给服乙离 子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方 法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图: 第 3 页(共 26 页) 记 C 为事件:“乙离子残留在体内的百分比不低于 5.5”,根据直方图得到 P(C)的估 计值为 0.70. (1)求乙离子残留百分比直方图中 a,b 的值; (2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为 代表). 18.(12 分)△ABC 的内角 A、B、C 的对边分别为 a,b,c.已知 asin =bsinA. (1)求 B; (2)若△ABC 为锐角三角形,且 c=1,求△ABC 面积的取值范围. 第 4 页(共 26 页) 19.(12 分)图 1 是由矩形 ADEB,Rt△ABC 和菱形 BFGC 组成的一个平面图形,其中 AB= 1,BE=BF=2,∠FBC=60°.将其沿 AB,BC 折起使得 BE 与 BF 重合,连结 DG,如 图 2. (1)证明:图 2 中的 A,C,G,D 四点共面,且平面 ABC⊥平面 BCGE; (2)求图 2 中的四边形 ACGD 的面积. 20.(12 分)已知函数 f(x)=2×3﹣ax2+2. (1)讨论 f(x)的单调性; (2)当 0<a<3 时,记 f(x)在区间[0,1]的最大值为 M,最小值为 m,求 M﹣m 的取 值范围. 第 5 页(共 26 页) 21.(12 分)已知曲线 C:y= ,D 为直线 y=﹣ 上的动点,过D 作 C 的两条切线, 切点分别为 A,B. (1)证明:直线 AB 过定点. (2)若以 E(0, )为圆心的圆与直线AB 相切,且切点为线段 AB 的中点,求该圆的 方程. (二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的 第一题计分。 [选修 4-4:坐标系与参数方程](10 分) 22.(10 分)如图,在极坐标系 Ox 中,A(2,0),B( ,),C( ,),D (2,π),弧 所在圆的圆心分别是(1,0),(1, ,,),(1,π),曲 线 M1 是弧 ,曲线M2 是弧 ,曲线M3 是弧 (1)分别写出 M1,M2,M3 的极坐标方程; .(2)曲线 M 由 M1,M2,M3 构成,若点 P 在 M 上,且|OP|= ,求P 的极坐标. 第 6 页(共 26 页) [选修 4-5:不等式选讲](10 分) 23.设 x,y,z∈R,且 x+y+z=1. (1)求(x﹣1)2+(y+1)2+(z+1)2 的最小值; (2)若(x﹣2)2+(y﹣1)2+(z﹣a)2≥ 成立,证明:a≤﹣3 或 a≥﹣1. 第 7 页(共 26 页) 2019 年全国统一高考数学试卷(文科)(新课标Ⅲ) 参考答案与试题解析 一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.(5 分)已知集合 A={﹣1,0,1,2},B={x|x2≤1},则 A∩B=(  ) A.{﹣1,0,1} B.{0,1} C.{﹣1,1} D.{0,1,2} 【分析】解求出 B 中的不等式,找出 A 与 B 的交集即可. 【解答】解:因为 A={﹣1,0,1,2},B={x|x2≤1}={x|﹣1≤x≤1}, 所以 A∩B={﹣1,0,1}, 故选:A. 【点评】本题考查了两个集合的交集和一元二次不等式的解法,属基础题. 2.(5 分)若 z(1+i)=2i,则 z=(  ) A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i 【分析】利用复数的运算法则求解即可. 【解答】解:由 z(1+i)=2i,得 z= =1+i. 故选:D. 【点评】本题主要考查两个复数代数形式的乘法和除法法则,虚数单位 i 的幂运算性质, 属于基础题. 3.(5 分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是(  ) A. B. C. D. 【分析】利用古典概型求概率原理,首先用捆绑法将两女生捆绑在一起作为一个人排列 找出分子,再 全部排列找到分母,可得到答案. 32【解答】解:方法一:用捆绑法将两女生捆绑在一起作为一个人排列,有 A3 A2 =12 种 排法, 4再所有的 4 个人全排列有:A4 =24 种排法, 第 8 页(共 26 页) 利用古典概型求概率原理得:p= = , 方法二:假设两位男同学为 A、B,两位女同学为 C、D,所有的排列情况有 24 种,如下 :(ABCD)(ABDC)(ACBD)(ACDB)(ADCB)(ADBC) (BACD)(BADC)(BCAD)(BCDA)(BDAC)(BDCA) (CABD)(CADB)(CBAD)(CBDA)(CDAB)(CDBA) (DABC)(DACB)(DBAC)(DBCA)(DCAB)(DCBA) 其中两位女同学相邻的情况有 12 种,分别为(ABCD)、(ABDC)、(ACDB)、(ADCB )、(BACD)、(BADC)、(BCDA)、(BDCA)、(CDAB)、(CDBA)、(DCAB )、(DCBA), 故两位女同学相邻的概率是:p= 故选:D. = , 【点评】本题考查排列组合的综合应用.考查古典概型的计算. 4.(5 分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称 为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了 100 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过《红楼梦》的学 生共有 80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60 位,则该校阅读过《 西游记》的学生人数与该学校学生总数比值的估计值为(  ) A.0.5 B.0.6 C.0.7 D.0.8 【分析】作出维恩图,得到该学校阅读过《西游记》的学生人数为 70 人,由此能求出该 学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值. 【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了 100 位学生, 其中阅读过《西游记》或《红楼梦》的学生共有 90 位, 阅读过《红楼梦》的学生共有 80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60 位, 作出维恩图,得: 第 9 页(共 26 页) ∴该学校阅读过《西游记》的学生人数为 70 人, 则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为: =0.7. 故选:C. 【点评】本题考查该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值 的求法,考查维恩图的性质等基础知识,考查推理能力与计算能力,属于基础题. 5.(5 分)函数 f(x)=2sinx﹣sin2x 在[0,2π]的零点个数为(  ) A.2 B.3 C.4 D.5 【分析】解函数 f(x)=2sinx﹣sin2x=0,在[0,2π]的解,即 2sinx=sin2x 令左右为新函 数 h(x)和 g(x),作图求两函数在区间的交点即可. 【解答】解:函数 f(x)=2sinx﹣sin2x 在[0,2π]的零点个数, 即:2sinx﹣sin2x=0 在区间[0,2π]的根个数, 即 2sinx=sin2x,令左右为新函数 h(x)和 g(x), h(x)=2sinx 和 g(x)=sin2x, 作图求两函数在区间[0,2π]的图象可知: h(x)=2sinx 和 g(x)=sin2x,在区间[0,2π]的图象的交点个数为 3 个. 故选:B. 【点评】本题考查了函数的零点与方程的根的关系应用,考查数形结合法,属于基础题. 6.(5 分)已知各项均为正数的等比数列{an}的前 4 项和为 15,且 a5=3a3+4a1,则 a3=(   )A.16 B.8 C.4 D.2 【 分 析 】 设 等 比 数 列 {an} 的 公 比 为q ( q > 0 ) , 根 据 条 件 可 得 第 10 页(共 26 页) ,解方程即可. 【解答】解:设等比数列{an}的公比为 q(q>0), 则由前 4 项和为 15,且 a5=3a3+4a1,有 ,∴ ,∴,故选:C. 【点评】本题考查了等差数列的性质和前 n 项和公式,考查了方程思想,属基础题. 7.(5 分)已知曲线 y=aex+xlnx 在点(1,ae)处的切线方程为 y=2x+b,则(  ) A.a=e,b=﹣1 B.a=e,b=1 C.a=e﹣1,b=1 D.a=e﹣1,b=﹣1 【分析】求得函数 y 的导数,可得切线的斜率,由切线方程,可得 ae+1+0=2,可得 a, 进而得到切点,代入切线方程可得 b 的值. 【解答】解:y=aex+xlnx 的导数为 y′=aex+lnx+1, 由在点(1,ae)处的切线方程为 y=2x+b, 可得 ae+1+0=2,解得 a=e﹣1 ,又切点为(1,1),可得 1=2+b,即 b=﹣1, 故选:D. 【点评】本题考查导数的运用:求切线的斜率,考查直线方程的运用,考查方程思想和 运算能力,属于基础题. 8.(5 分)如图,点 N 为正方形 ABCD 的中心,△ECD 为正三角形,平面 ECD⊥平面 ABCD ,M 是线段 ED 的中点,则(  ) A.BM=EN,且直线 BM,EN 是相交直线 B.BM≠EN,且直线 BM,EN 是相交直线 C.BM=EN,且直线 BM,EN 是异面直线 第 11 页(共 26 页) D.BM≠EN,且直线 BM,EN 是异面直线 【分析】推导出 BM 是△BDE 中 DE 边上的中线,EN 是△BDE 中 BD 边上的中线,从而 直线 BM,EN 是相交直线,设 DE=a,则 BD= BM≠EN. ,BE= =,从而 【解答】解:∵点 N 为正方形 ABCD 的中心,△ECD 为正三角形,平面 ECD⊥平面 ABCD ,M 是线段 ED 的中点, ∴BM⊂平面 BDE,EN⊂平面 BDE, ∵BM 是△BDE 中 DE 边上的中线,EN 是△BDE 中 BD 边上的中线, ∴直线 BM,EN 是相交直线, 设 DE=a,则 BD= ∴BM= a,EN= ,BE= =,=a, ∴BM≠EN, 故选:B. 【点评】本题考查两直线的位置关系的判断,考查空间中线线、线面、面面间的位置关 系等基础知识,考查推理能力与计算能力,是中档题. 9.(5 分)执行如图的程序框图,如果输入的 ɛ 为 0.01,则输出 s 的值等于(  ) 第 12 页(共 26 页) A.2﹣ B.2﹣ C.2﹣ D.2﹣ 【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量 s 的 值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【解答】解:第一次执行循环体后,s=1,x= ,不满足退出循环的条件x<0.01; 再次执行循环体后,s=1+ ,x= ,不满足退出循环的条件 x<0.01; 再次执行循环体后,s=1+ +,x= ,不满足退出循环的条件x<0.01; …由于 >0.01,而 ++… +… <0.01,可得: 当 s=1+ +,x= =2﹣ ,此时,满足退出循环的条件 x<0.01, 输出 s=1+ 故选:C. +.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟 循环的方法解答,属于基础题. 10.(5 分)已知 F 是双曲线 C: ﹣=1 的一个焦点,点 P 在 C 上,O 为坐标原点. 若|OP|=|OF|,则△OPF 的面积为(  ) 第 13 页(共 26 页) A. B. C. D. 【分析】由题意画出图形,不妨设 F 为双曲线 C: 限点,求出 P 点坐标,再由三角形面积公式求解. ﹣=1 的右焦点,P 为第一象 【解答】解:如图,不妨设 F 为双曲线 C: ﹣=1 的右焦点,P 为第一象限点. 由双曲线方程可得,a2=4,b2=5,则 则以 O 为圆心,以 3 为半径的圆的方程为 x2+y2=9. ,联立 ,解得 P( , ). ∴.故选:B. 【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题. 11.(5 分)记不等式组 表示的平面区域为 D.命题 p:∃(x,y)∈D,2x+y≥ 9;命题 q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题 ①p∨q;②¬p∨q;③p∧¬q;④¬p∧¬q 这四个命题中,所有真命题的编号是(  ) A.①③ B.①② C.②③ D.③④ 【分析】由不等式组 画出平面区域为 D.在由或且非逻辑连词连接的命题判 断真假即可. 第 14 页(共 26 页) 【解答】解:作出等式组 的平面区域为 D.在图形可行域范围内可知: 命题 p:∃(x,y)∈D,2x+y≥9;是真命题,则¬p 假命题; 命题 q:∀(x,y)∈D,2x+y≤12.是假命题,则¬q 真命题; 所以:由或且非逻辑连词连接的命题判断真假有: ①p∨q 真;②¬p∨q 假;③p∧¬q 真;④¬p∧¬q 假; 故答案①③真,正确. 故选:A. 【点评】本题考查了简易逻辑的有关判定、线性规划问题,考查了推理能力与计算能力, 属于基础题. 12.(5 分)设 f(x)是定义域为 R 的偶函数,且在(0,+∞)单调递减,则(  ) A.f(log3 )>f(2 )>f(2 B.f(log3 )>f(2 )>f(2 C.f(2 )>f(2 )>f(log3 D.f(2 )>f(2 )>f(log3 ))))【分析】根据 log34>log33=1, ,结合 f(x)的奇偶和单调性 即可判断. 【解答】解:∵f(x)是定义域为 R 的偶函数 ∴,∵log34>log33=1, ∴0 ,f(x)在(0,+∞)上单调递减, ∴>>,第 15 页(共 26 页) 故选:C. 【点评】本题考查了函数的奇偶性和单调性,关键是指对数函数单调性的灵活应用,属 基础题. 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。 13.(5 分)已知向量 =(2,2), =(﹣8,6),则 cos< , >= ﹣  . 【分析】数量积的定义结合坐标运算可得结果 【解答】解: =2×(﹣8)+2×6=﹣4, | |= =2 ,| |= =10, cos< , >= =﹣ .故答案为:﹣ 【点评】本题考查数量积的定义和坐标运算,考查计算能力. 14.(5 分)记 Sn 为等差数列{an}的前 n 项和.若 a3=5,a7=13,则 S10= 100 . 【分析】由已知求得首项与公差,代入等差数列的前 n 项和公式求解. 【解答】解:在等差数列{an}中,由 a3=5,a7=13,得 d= ∴a1=a3﹣2d=5﹣4=1. ,则.故答案为:100. 【点评】本题考查等差数列的通项公式与前 n 项和,是基础的计算题. 15.(5 分)设 F1,F2 为椭圆 C: +=1 的两个焦点,M 为 C 上一点且在第一象限. 若△MF1F2 为等腰三角形,则 M 的坐标为 (3, ) . 【分析】设 M(m,n),m,n>0,求得椭圆的 a,b,c,e,由于 M 为 C 上一点且在第 一象限,可得|MF1|>|MF2|, △MF1F2 为等腰三角形,可能|MF1|=2c 或|MF2|=2c,运用椭圆的焦半径公式,可得所求 点的坐标. 第 16 页(共 26 页) 【解答】解:设 M(m,n),m,n>0,椭圆 C: +=1 的 a=6,b=2 ,c=4, e= = , 由于 M 为 C 上一点且在第一象限,可得|MF1|>|MF2|, △MF1F2 为等腰三角形,可能|MF1|=2c 或|MF2|=2c, 即有 6+ m=8,即 m=3,n= ;6﹣ m=8,即 m=﹣3<0,舍去. 可得 M(3, ). ). 故答案为:(3, 【点评】本题考查椭圆的方程和性质,考查分类讨论思想方法,以及椭圆焦半径公式的 运用,考查方程思想和运算能力,属于中档题. 16.(5 分)学生到工厂劳动实践,利用 3D 打印技术制作模型.如图,该模型为长方体 ABCD ﹣A1B1C1D1 挖去四棱锥 O﹣EFGH 后所得的几何体,其中 O 为长方体的中心,E,F,G ,H 分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D 打印所用原料密度为 0.9g/cm3. 不考虑打印损耗,制作该模型所需原料的质量为 118.8 g. 【 分 析 】 该 模 型 体 积 为 ﹣ VO ﹣ EFGH = 6 × 6 × 4 ﹣ =132(cm3),再由 3D 打印所用原料密度为 0.9g/cm3, 不考虑打印损耗,能求出制作该模型所需原料的质量. 【解答】解:该模型为长方体 ABCD﹣A1B1C1D1,挖去四棱锥 O﹣EFGH 后所得的几何 体,其中 O 为长方体的中心, E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm, ∴该模型体积为: 第 17 页(共 26 页) ﹣VO﹣EFGH =6×6×4﹣ =144﹣12=132(cm3), ∵3D 打印所用原料密度为 0.9g/cm3,不考虑打印损耗, ∴制作该模型所需原料的质量为:132×0.9=118.8(g). 故答案为:118.8. 【点评】本题考查制作该模型所需原料的质量的求法,考查长方体、四棱锥的体积等基 础知识,考查推理能力与计算能力,考查数形结合思想,属于中档题. 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考 题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。 17.(12 分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将 200 只小 鼠随机分成 A、B 两组,每组 100 只,其中 A 组小鼠给服甲离子溶液,B 组小鼠给服乙离 子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方 法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图: 记 C 为事件:“乙离子残留在体内的百分比不低于 5.5”,根据直方图得到 P(C)的估 计值为 0.70. (1)求乙离子残留百分比直方图中 a,b 的值; 第 18 页(共 26 页) (2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为 代表). 【分析】(1)由频率分布直方图的性质列出方程组,能求出乙离子残留百分比直方图中 a,b. (2)利用频率分布直方图能估计甲离子残留百分比的平均值和乙离子残留百分比的平均 值. 【解答】解:(1)C 为事件:“乙离子残留在体内的百分比不低于 5.5”, 根据直方图得到 P(C)的估计值为 0.70. 则由频率分布直方图得: ,解得乙离子残留百分比直方图中 a=0.35,b=0.10. (2)估计甲离子残留百分比的平均值为: =2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值为: =3×0.05+4×0.1+5×0.15+6×0.35+7×0.2+8×0.15=6.00. 【点评】本题考查频率、平均值的求法,考查频率分布直方图的性质等基础知识,考查 推理能力与计算能力,属于基础题. 18.(12 分)△ABC 的内角 A、B、C 的对边分别为 a,b,c.已知 asin =bsinA. (1)求 B; (2)若△ABC 为锐角三角形,且 c=1,求△ABC 面积的取值范围. 【分析】(1)运用三角函数的诱导公式和二倍角公式,以及正弦定理,计算可得所求角 ;(2)运用余弦定理可得 b,由三角形 ABC 为锐角三角形,可得 a2+a2﹣a+1>1 且 1+a2﹣ a+1>a2,求得 a 的范围,由三角形的面积公式,可得所求范围. 【解答】解:(1)asin =bsinA,即为 asin =acos =bsinA, 可得 sinAcos =sinBsinA=2sin cos sinA, ∵sinA>0, 第 19 页(共 26 页) ∴cos =2sin cos 若 cos =0,可得 B=(2k+1)π,k∈Z 不成立, ∴sin 由 0<B<π,可得 B= ,=,;(2)若△ABC 为锐角三角形,且 c=1, 由余弦定理可得 b= =,由三角形 ABC 为锐角三角形,可得 a2+a2﹣a+1>1 且 1+a2﹣a+1>a2, 解得 <a<2, 可得△ABC 面积 S= a•sin =a∈( ,). 【点评】本题考查三角形的正弦定理和余弦定理、面积公式的运用,考查三角函数的恒 等变换,以及化简运算能力,属于中档题. 19.(12 分)图 1 是由矩形 ADEB,Rt△ABC 和菱形 BFGC 组成的一个平面图形,其中 AB =1,BE=BF=2,∠FBC=60°.将其沿 AB,BC 折起使得 BE 与 BF 重合,连结 DG, 如图 2. (1)证明:图 2 中的 A,C,G,D 四点共面,且平面 ABC⊥平面 BCGE; (2)求图 2 中的四边形 ACGD 的面积. 【分析】(1)运用空间线线平行的公理和确定平面的条件,以及线面垂直的判断和面面 垂直的判定定理,即可得证; (2)连接 BG,AG,由线面垂直的性质和三角形的余弦定理和勾股定理,结合三角形的 面积公式,可得所求值. 【解答】解:(1)证明:由已知可得 AD∥BE,CG∥BE,即有 AD∥CG, 第 20 页(共 26 页) 则 AD,CG 确定一个平面,从而 A,C,G,D 四点共面; 由四边形 ABED 为矩形,可得 AB⊥BE, 由△ABC 为直角三角形,可得 AB⊥BC, 又 BC∩BE=E,可得 AB⊥平面 BCGE, AB⊂平面 ABC,可得平面 ABC⊥平面 BCGE; (2)连接 BG,AG, 由 AB⊥平面 BCGE,可得 AB⊥BG, 在△BCG 中,BC=CG=2,∠BCG=120°,可得 BG=2BCsin60°=2 ,可得 AG= 在△ACG 中,AC= ,CG=2,AG= 可得 cos∠ACG= =﹣,即有 sin∠ACG= 则平行四边形 ACGD 的面积为 2× =4. =,,,×【点评】本题考查空间线线、线面和面面的位置关系,考查平行和垂直的判断和性质, 注意运用平面几何的性质,考查推理能力,属于中档题. 20.(12 分)已知函数 f(x)=2×3﹣ax2+2. (1)讨论 f(x)的单调性; (2)当 0<a<3 时,记 f(x)在区间[0,1]的最大值为 M,最小值为 m,求 M﹣m 的取 值范围. 【分析】(1)求出原函数的导函数,得到导函数的零点,对 a 分类求解原函数的单调性 ;(2)当 0<a<3 时,由(1)知,f(x)在(0, )上单调递减,在( ,1)上单调递 增,求得 f(x)在区间[0,1]的最小值为 ,最大值为 f(0)=2 或 f(1)= 第 21 页(共 26 页) 4﹣a.得到 M﹣m= ,分类求得函数值域,可得 M﹣m 的取值范 围. 【解答】解:(1)f′(x)=6×2﹣2ax=2x(3x﹣a), 令 f′(x)=0,得 x=0 或 x= .若 a>0,则当 x∈(﹣∞,0)∪( )时,f′(x)>0;当 x∈(0, )时,f′( x)<0. 故 f(x)在(﹣∞,0),( )上单调递增,在(0, )上单调递减; 若 a=0,f(x)在(﹣∞,+∞)上单调递增; 若 a<0,则当 x∈(﹣∞, )∪(0,+∞)时,f′(x)>0;当 x∈( ,0)时,f′( x)<0. 故 f(x)在(﹣∞, ),(0,+∞)上单调递增,在( ,0)上单调递减; (2)当 0<a<3 时,由(1)知,f(x)在(0, )上单调递减,在( ,1)上单调递 增, ∴f(x)在区间[0,1]的最小值为 ,最大值为 f(0)=2 或 f(1)=4﹣a. 于是,m= ,M= .∴M﹣m= .当 0<a<2 时,可知 2﹣a+ 单调递减,∴M﹣m 的取值范围是( ); 当 2≤a<3 时, 单调递增,∴M﹣m 的取值范围是[ ,1). 综上,M﹣m 的取值范围[ ,2). 【点评】本题主要考查导数的运算,运用导数研究函数的性质等基础知识和方法,考查 函数思想和化归与转化思想,考查分类讨论的数学思想方法,属难题. 第 22 页(共 26 页) 21.(12 分)已知曲线 C:y= ,D 为直线 y=﹣ 上的动点,过D 作 C 的两条切线, 切点分别为 A,B. (1)证明:直线 AB 过定点. (2)若以 E(0, )为圆心的圆与直线AB 相切,且切点为线段 AB 的中点,求该圆的 方程. 【分析】(1)设 D(t,﹣ ),A(x1,y1),则 ,利用导数求斜率及两点求 斜率可得 2tx1﹣2y1+1=0,设 B(x2,y2),同理可得 2tx2﹣2y2+1=0,得到直线 AB 的方 程为 2tx﹣2y+1=0,再由直线系方程求直线 AB 过的定点; (2)由(1)得直线 AB 的方程 y=tx+ ,与抛物线方程联立,利用中点坐标公式及根与 系数的关系求得线段 AB 的中点 M(t, ),再由 ,可得关于 t 的方程,求 得 t=0 或 t=±1.然后分类求得| |=2 及所求圆的方程. 【解答】(1)证明:设 D(t,﹣ ),A(x1,y1),则 ,由于 y′=x,∴切线 DA 的斜率为 x1,故 ,整理得:2tx1﹣2y1+1=0. 设 B(x2,y2),同理可得 2tx2﹣2y2+1=0. 故直线 AB 的方程为 2tx﹣2y+1=0. ∴直线 AB 过定点(0, ); (2)解:由(1)得直线 AB 的方程 y=tx+ .由,可得 x2﹣2tx﹣1=0. 于是 .设 M 为线段 AB 的中点,则 M(t, 由于 ,而 ∴t+(t2﹣2)t=0,解得 t=0 或 t=±1. ), ,与向量(1,t)平行, 第 23 页(共 26 页) 当 t=0 时,| |=2,所求圆的方程为 ;当 t=±1 时,| |= ,所求圆的方程为 .【点评】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能 力,是中档题. (二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的 第一题计分。 [选修 4-4:坐标系与参数方程](10 分) 22.(10 分)如图,在极坐标系 Ox 中,A(2,0),B( ,),C( ,),D (2,π),弧 所在圆的圆心分别是(1,0),(1, ,,),(1,π),曲 线 M1 是弧 ,曲线M2 是弧 ,曲线M3 是弧 (1)分别写出 M1,M2,M3 的极坐标方程; .(2)曲线 M 由 M1,M2,M3 构成,若点 P 在 M 上,且|OP|= ,求P 的极坐标. 【分析】(1)根据弧 ),结合极坐标方程进行求解即可; (2)讨论角的范围,由极坐标过程|OP|= ,进行求解即可得P 的极坐标; ,,所在圆的圆心分别是(1,0),(1, ),(1,π 【解答】解:(1)由题设得,弧 2sinθ,ρ=﹣2cosθ, ,,所在圆的极坐标方程分别为 ρ=2cosθ,ρ= 第 24 页(共 26 页) 则 M1 的极坐标方程为 ρ=2cosθ,(0≤θ≤ θ≤ ), M3 的极坐标方程为 ρ=﹣2cosθ,( (2)设 P(ρ,θ),由题设及(1)知, ),M2 的极坐标方程为 ρ=2sinθ,( ≤≤θ≤π), 若 0≤θ≤ ,由 2cosθ= 得cosθ= ,由 2sinθ= 得sinθ= ,得 θ= ,得 θ= ,得 θ= )或( ,若若≤θ≤ 或,≤θ≤π,由﹣2cosθ= 得cosθ=﹣ ,综上 P 的极坐标为( ,)或( ,,)或( ,). 【点评】本题主要考查极坐标方程的应用,结合极坐标过程公式求出对应点的极坐标方 程是解决本题的关键. [选修 4-5:不等式选讲](10 分) 23.设 x,y,z∈R,且 x+y+z=1. (1)求(x﹣1)2+(y+1)2+(z+1)2 的最小值; (2)若(x﹣2)2+(y﹣1)2+(z﹣a)2≥ 成立,证明:a≤﹣3 或 a≥﹣1. 【分析】(1)运用柯西不等式可得(12+12+12)[(x﹣1)2+(y+1)2+(z+1)2]≥(x﹣ 1+y+1+z+1)2=4,可得所求最小值; (2)运用柯西不等式求得(x﹣2)2+(y﹣1)2+(z﹣a)2 的最小值,由题意可得 不大 于最小值,解不等式可得所求范围. 【解答】解:(1)x,y,z∈R,且 x+y+z=1, 由柯西不等式可得 (12+12+12)[(x﹣1)2+(y+1)2+(z+1)2]≥(x﹣1+y+1+z+1)2=4, 可得(x﹣1)2+(y+1)2+(z+1)2≥ ,即有(x﹣1)2+(y+1)2+(z+1)2 的最小值为 ;(2)证明:由 x+y+z=1,柯西不等式可得 (12+12+12)[(x﹣2)2+(y﹣1)2+(z﹣a)2]≥(x﹣2+y﹣1+z﹣a)2=(a+2)2, 第 25 页(共 26 页) 可得(x﹣2)2+(y﹣1)2+(z﹣a)2≥ 即有(x﹣2)2+(y﹣1)2+(z﹣a)2 的最小值为 由题意可得 解得 a≥﹣1 或 a≤﹣3. ,,≥,【点评】本题考查柯西不等式的运用:求最值,考查化简运算能力和推理能力,属于基 础题. 第 26 页(共 26 页)

分享到 :
相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注