2014 年全国统一高考数学试卷(文科)(新课标Ⅱ) 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只 有一项是符合题目要求的 1.(5 分)已知集合 A={﹣2,0,2},B={x|x2﹣x﹣2=0},则 A∩B=( ) A.∅ B.{2} C.{0} D.{﹣2} 2.(5 分) =( ) A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 3.(5 分)函数 f(x)在 x=x0 处导数存在,若 p:f′(x0)=0:q:x=x0 是 f(x) 的极值点,则( ) A.p 是 q 的充分必要条件 B.p 是 q 的充分条件,但不是 q 的必要条件 C.p 是 q 的必要条件,但不是 q 的充分条件 D.p 既不是 q 的充分条件,也不是 q 的必要条件 4.(5 分)设向量 , 满足| + |= A.1 B.2 ,| ﹣ |= ,则 • =( ) C.3 D.5 5.(5 分)等差数列{an}的公差为 2,若 a2,a4,a8 成等比数列,则{an}的前 n 项和 Sn=( ) A.n(n+1) B.n(n﹣1) C. D. 6.(5 分)如图,网格纸上正方形小格的边长为 1(表示 1cm),图中粗线画出 的是某零件的三视图,该零件由一个底面半径为 3cm,高为 6cm 的圆柱体毛 坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) 第 1 页(共 28 页) A. B. C. D. 7.(5 分)正三棱柱 ABC﹣A1B1C1 的底面边长为 2,侧棱长为 ,D 为 BC 中点, 则三棱锥 A﹣B1DC1 的体积为( ) A.3 B. C.1 D. 8.(5 分)执行如图所示的程序框图,若输入的 x,t 均为 2,则输出的 S=( ) A.4 B.5 C.6 D.7 第 2 页(共 28 页) 9.(5 分)设 x,y 满足约束条件 ,则 z=x+2y 的最大值为( ) A.8 B.7 C.2 D.1 10.(5 分)设 F 为抛物线 C:y2=3x 的焦点,过 F 且倾斜角为 30°的直线交于 C 于 A,B 两点,则|AB|=( ) A. B.6 C.12 D.7 11.(5 分)若函数 f(x)=kx﹣ln x 在区间(1,+∞)单调递增,则 k 的取值范 围是( ) A.(﹣∞,﹣2] B.(﹣∞,﹣1] C.[2,+∞) D.[1,+∞) 12.(5 分)设点 M(x0,1),若在圆 O:x2+y2=1 上存在点 N,使得∠OMN=45° ,则 x0 的取值范围是( ) A.[﹣1,1] B.[﹣ , ] C.[﹣ ,]D.[﹣ ,]二、填空题:本大题共 4 小题,每小题 5 分. 13.(5 分)甲、乙两名运动员各自等可能地从红、白、蓝 3 种颜色的运动服中 选择 1 种,则他们选择相同颜色运动服的概率为 . 14.(5 分)函数 f(x)=sin(x+φ)﹣2sinφcosx 的最大值为 . 15.(5 分)偶函数 y=f(x)的图象关于直线 x=2 对称,f(3)=3,则 f(﹣1)= .16.(5 分)数列{an}满足 an+1 =,a8=2,则 a1= . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(12 分)四边形 ABCD 的内角 A 与 C 互补,AB=1,BC=3,CD=DA=2. (1)求 C 和 BD; (2)求四边形 ABCD 的面积. 第 3 页(共 28 页) 18.(12 分)如图,四棱锥 P﹣ABCD 中,底面 ABCD 为矩形,PA⊥平面 ABCD, E 为 PD 的中点. (Ⅰ)证明:PB∥平面 AEC; (Ⅱ)设 AP=1,AD= ,三棱锥 P﹣ABD 的体积 V= ,求 A 到平面 PBC 的距离 .19.(12 分)某市为了考核甲、乙两部门的工作情况,随机访问了 50 位市民, 根据这 50 位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎 叶图如图: (Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于 90 的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价. 第 4 页(共 28 页) 20.(12 分)设 F1,F2 分别是 C: +=1(a>b>0)的左,右焦点,M 是 C 上一点且 MF2 与 x 轴垂直,直线 MF1 与 C 的另一个交点为 N. (1)若直线 MN 的斜率为 ,求C 的离心率; (2)若直线 MN 在 y 轴上的截距为 2,且|MN|=5|F1N|,求 a,b. 21.(12 分)已知函数 f(x)=x3﹣3×2+ax+2,曲线 y=f(x)在点(0,2)处的 切线与 x 轴交点的横坐标为﹣2. (Ⅰ)求 a; (Ⅱ)证明:当 k<1 时,曲线 y=f(x)与直线 y=kx﹣2 只有一个交点. 三、选修 4-1:几何证明选讲 22.(10 分)如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线 PBC 与⊙O 相交于点 B,C,PC=2PA,D 为 PC 的中点,AD 的延长线交⊙O 于点 E,证明: (Ⅰ)BE=EC; (Ⅱ)AD•DE=2PB2. 第 5 页(共 28 页) 四、选修 4-4,坐标系与参数方程 23.在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系 ,半圆 C 的极坐标方程为 ρ=2cosθ,θ∈[0, (Ⅰ)求 C 的参数方程; ](Ⅱ)设点 D 在半圆 C 上,半圆 C 在 D 处的切线与直线 l:y= x+2 垂直,根据 (1)中你得到的参数方程,求直线 CD 的倾斜角及 D 的坐标. 五、选修 4-5:不等式选讲 24.设函数 f(x)=|x+ |+|x﹣a|(a>0). (Ⅰ)证明:f(x)≥2; (Ⅱ)若 f(3)<5,求 a 的取值范围. 第 6 页(共 28 页) 2014 年全国统一高考数学试卷(文科)(新课标Ⅱ) 参考答案与试题解析 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只 有一项是符合题目要求的 1.(5 分)已知集合 A={﹣2,0,2},B={x|x2﹣x﹣2=0},则 A∩B=( ) A.∅ B.{2} C.{0} D.{﹣2} 【考点】1E:交集及其运算.菁优网版权所有 【专题】5J:集合. 【分析】先解出集合 B,再求两集合的交集即可得出正确选项. 【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2}, ∴A∩B={2}. 故选:B. 【点评】本题考查交的运算,理解好交的定义是解答的关键. 2.(5 分) A.1+2i =( ) B.﹣1+2i C.1﹣2i D.﹣1﹣2i 【考点】A5:复数的运算.菁优网版权所有 【专题】5N:数系的扩充和复数. 【分析】分子分母同乘以分母的共轭复数 1+i 化简即可. 【解答】解:化简可得 ====﹣1+2i 故选:B. 【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决 问题的关键,属基础题. 第 7 页(共 28 页) 3.(5 分)函数 f(x)在 x=x0 处导数存在,若 p:f′(x0)=0:q:x=x0 是 f(x) 的极值点,则( ) A.p 是 q 的充分必要条件 B.p 是 q 的充分条件,但不是 q 的必要条件 C.p 是 q 的必要条件,但不是 q 的充分条件 D.p 既不是 q 的充分条件,也不是 q 的必要条件 【考点】29:充分条件、必要条件、充要条件.菁优网版权所有 【专题】5L:简易逻辑. 【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定 义即可得到结论. 【解答】解:函数 f(x)=x3 的导数为 f’(x)=3×2,由 f′(x0)=0,得 x0=0,但此 时函数 f(x)单调递增,无极值,充分性不成立. 根据极值的定义和性质,若 x=x0 是 f(x)的极值点,则 f′(x0)=0 成立,即必要 性成立, 故 p 是 q 的必要条件,但不是 q 的充分条件, 故选:C. 【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间 的关系是解决本题的关键,比较基础. 4.(5 分)设向量 , 满足| + |= A.1 B.2 ,| ﹣ |= ,则 • =( ) C.3 D.5 【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有 【专题】5A:平面向量及应用. 【分析】将等式进行平方,相加即可得到结论. 【解答】解:∵| + |= ,| ﹣ |= ,∴分别平方得 +2 • + =10, ﹣2 • + =6, 第 8 页(共 28 页) 两式相减得 4 • =10﹣6=4, 即 • =1, 故选:A. 【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键, 比较基础. 5.(5 分)等差数列{an}的公差为 2,若 a2,a4,a8 成等比数列,则{an}的前 n 项和 Sn=( ) A.n(n+1) B.n(n﹣1) C. D. 【考点】83:等差数列的性质.菁优网版权所有 【专题】54:等差数列与等比数列. 2【分析】由题意可得 a4 =(a4﹣4)(a4+8),解得 a4 可得 a1,代入求和公式可 得. 2【解答】解:由题意可得 a4 =a2•a8, 2即 a4 =(a4﹣4)(a4+8), 解得 a4=8, ∴a1=a4﹣3×2=2, ∴Sn=na1+ =2n+ d, ×2=n(n+1), 故选:A. 【点评】本题考查等差数列的性质和求和公式,属基础题. 6.(5 分)如图,网格纸上正方形小格的边长为 1(表示 1cm),图中粗线画出 的是某零件的三视图,该零件由一个底面半径为 3cm,高为 6cm 的圆柱体毛 坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) 第 9 页(共 28 页) A. B. C. D. 【考点】L!:由三视图求面积、体积.菁优网版权所有 【专题】5F:空间位置关系与距离. 【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可 .【解答】解:几何体是由两个圆柱组成,一个是底面半径为 3 高为 2,一个是底 面半径为 2,高为 4, 组合体体积是:32π•2+22π•4=34π. 底面半径为 3cm,高为 6cm 的圆柱体毛坯的体积为:32π×6=54π 切削掉部分的体积与原来毛坯体积的比值为: =.故选:C. 【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象 能力以及计算能力. 7.(5 分)正三棱柱 ABC﹣A1B1C1 的底面边长为 2,侧棱长为 ,D 为 BC 中点, 则三棱锥 A﹣B1DC1 的体积为( ) 第 10 页(共 28 页) A.3 B. C.1 D. 【考点】LF:棱柱、棱锥、棱台的体积.菁优网版权所有 【专题】5F:空间位置关系与距离. 【分析】由题意求出底面 B1DC1 的面积,求出 A 到底面的距离,即可求解三棱锥 的体积. 【解答】解:∵正三棱柱 ABC﹣A1B1C1 的底面边长为 2,侧棱长为 ,D 为 BC 中点, ∴底面 B1DC1 的面积: =,A 到底面的距离就是底面正三角形的高: 三棱锥 A﹣B1DC1 的体积为: .=1. 故选:C. 【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关 键. 8.(5 分)执行如图所示的程序框图,若输入的 x,t 均为 2,则输出的 S=( ) 第 11 页(共 28 页) A.4 B.5 C.6 D.7 【考点】EF:程序框图.菁优网版权所有 【专题】5K:算法和程序框图. 【分析】根据条件,依次运行程序,即可得到结论. 【解答】解:若 x=t=2, 则第一次循环,1≤2 成立,则 M= 第二次循环,2≤2 成立,则 M= ,S=2+3=5,k=2, ,S=2+5=7,k=3, 此时 3≤2 不成立,输出 S=7, 故选:D. 【点评】本题主要考查程序框图的识别和判断,比较基础. 9.(5 分)设 x,y 满足约束条件 ,则 z=x+2y 的最大值为( ) A.8 B.7 C.2 D.1 【考点】7C:简单线性规划.菁优网版权所有 【专题】59:不等式的解法及应用. 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求 z 的最大值. 【解答】解:作出不等式对应的平面区域, 由 z=x+2y,得 y=﹣ 平移直线 y=﹣ ,,由图象可知当直线 y=﹣ 经过点 A 时,直线 y=﹣ 的截距最大,此时 z 最大. ,得 由,即 A(3,2), 此时 z 的最大值为 z=3+2×2=7, 第 12 页(共 28 页) 故选:B. 【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常 用方法. 10.(5 分)设 F 为抛物线 C:y2=3x 的焦点,过 F 且倾斜角为 30°的直线交于 C 于 A,B 两点,则|AB|=( ) A. B.6 C.12 D.7 【考点】K8:抛物线的性质.菁优网版权所有 【专题】5D:圆锥曲线的定义、性质与方程. 【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用 根与系数的关系,由弦长公式求得|AB|. 【解答】解:由 y2=3x 得其焦点 F( ,0),准线方程为 x=﹣ . 则过抛物线 y2=3x 的焦点 F 且倾斜角为 30°的直线方程为 y=tan30°(x﹣ )= (x﹣ ). 代入抛物线方程,消去 y,得 16×2﹣168x+9=0. 设 A(x1,y1),B(x2,y2) 则 x1+x2= ,所以|AB|=x1+ +x2+ = + +=12 第 13 页(共 28 页) 故选:C. 【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用, 运用弦长公式是解题的难点和关键. 11.(5 分)若函数 f(x)=kx﹣ln x 在区间(1,+∞)单调递增,则 k 的取值范 围是( ) A.(﹣∞,﹣2] B.(﹣∞,﹣1] C.[2,+∞) D.[1,+∞) 【考点】6B:利用导数研究函数的单调性.菁优网版权所有 【专题】38:对应思想;4R:转化法;51:函数的性质及应用. 【分析】求出导函数 f′(x),由于函数 f(x)=kx﹣lnx 在区间(1,+∞)单调递 增,可得 f′(x)≥0 在区间(1,+∞)上恒成立.解出即可. 【解答】解:f′(x)=k﹣ , ∵函数 f(x)=kx﹣lnx 在区间(1,+∞)单调递增, ∴f′(x)≥0 在区间(1,+∞)上恒成立. ∴k≥ , 而 y= 在区间(1,+∞)上单调递减, ∴k≥1. ∴k 的取值范围是:[1,+∞). 故选:D. 【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法, 属于中档题. 12.(5 分)设点 M(x0,1),若在圆 O:x2+y2=1 上存在点 N,使得∠OMN=45° ,则 x0 的取值范围是( ) A.[﹣1,1] B.[﹣ , ] C.[﹣ ,]D.[﹣ ,]第 14 页(共 28 页) 【考点】JE:直线和圆的方程的应用.菁优网版权所有 【专题】5B:直线与圆. 【分析】根据直线和圆的位置关系,利用数形结合即可得到结论. 【解答】解:由题意画出图形如图:点 M(x0,1),要使圆 O:x2+y2=1 上存在 点 N,使得∠OMN=45°, 则∠OMN 的最大值大于或等于 45°时一定存在点 N,使得∠OMN=45°, 而当 MN 与圆相切时∠OMN 取得最大值, 此时 MN=1, 图中只有 M′到 M″之间的区域满足 MN=1, ∴x0 的取值范围是[﹣1,1]. 故选:A. 【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是 快速解得本题的策略之一. 二、填空题:本大题共 4 小题,每小题 5 分. 13.(5 分)甲、乙两名运动员各自等可能地从红、白、蓝 3 种颜色的运动服中 选择 1 种,则他们选择相同颜色运动服的概率为 . 【考点】C8:相互独立事件和相互独立事件的概率乘法公式.菁优网版权所有 【专题】5I:概率与统计. 【分析】所有的选法共有 3×3=9 种,而他们选择相同颜色运动服的选法共有 3 第 15 页(共 28 页) 种,由此求得他们选择相同颜色运动服的概率. 【解答】解:所有的选法共有 3×3=9 种,而他们选择相同颜色运动服的选法共 有 3 种, 故他们选择相同颜色运动服的概率为 = , 故答案为: . 【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题. 14.(5 分)函数 f(x)=sin(x+φ)﹣2sinφcosx 的最大值为 1 . 【考点】GP:两角和与差的三角函数;HW:三角函数的最值.菁优网版权所有 【专题】56:三角函数的求值;57:三角函数的图像与性质. 【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值. 【解答】解:函数 f(x)=sin(x+φ)﹣2sinφcosx =sinxcosφ+sinφcosx﹣2sinφcosx =sinxcosφ﹣sinφcosx =sin(x﹣φ)≤1. 所以函数的最大值为 1. 故答案为:1. 【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力 . 15.(5 分)偶函数 y=f(x)的图象关于直线 x=2 对称,f(3)=3,则 f(﹣1)= 3 . 【考点】3K:函数奇偶性的性质与判断.菁优网版权所有 【专题】51:函数的性质及应用. 【分析】根据函数奇偶性和对称性的性质,得到 f(x+4)=f(x),即可得到结 第 16 页(共 28 页) 论. 【解答】解:法 1:因为偶函数 y=f(x)的图象关于直线 x=2 对称, 所以 f(2+x)=f(2﹣x)=f(x﹣2), 即 f(x+4)=f(x), 则 f(﹣1)=f(﹣1+4)=f(3)=3, 法 2:因为函数 y=f(x)的图象关于直线 x=2 对称, 所以 f(1)=f(3)=3, 因为 f(x)是偶函数, 所以 f(﹣1)=f(1)=3, 故答案为:3. 【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期 性 f(x+4)=f(x)是解决本题的关键,比较基础. 16.(5 分)数列{an}满足 an+1 =,a8=2,则 a1= . 【考点】8H:数列递推式.菁优网版权所有 【专题】11:计算题. 【分析】根据 a8=2,令 n=7 代入递推公式 an+1 a5 的结果,发现规律,求出 a1 的值. =,求得 a7,再依次求出 a6, 【解答】解:由题意得,an+1 令 n=7 代入上式得,a8= =,a8=2, ,解得 a7= ; 令 n=6 代入得,a7= 令 n=5 代入得,a6= …,解得 a6=﹣1; ,解得 a5=2; 根据以上结果发现,求得结果按 2, ,﹣1 循环, ∵8÷3=2…2,故 a1= 第 17 页(共 28 页) 故答案为: . 【点评】本题考查了数列递推公式的简单应用,即给 n 具体的值代入后求数列的 项,属于基础题. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(12 分)四边形 ABCD 的内角 A 与 C 互补,AB=1,BC=3,CD=DA=2. (1)求 C 和 BD; (2)求四边形 ABCD 的面积. 【考点】HP:正弦定理;HR:余弦定理.菁优网版权所有 【专题】56:三角函数的求值. 【分析】(1)在三角形 BCD 中,利用余弦定理列出关系式,将 BC,CD,以及 cosC 的值代入表示出 BD2,在三角形 ABD 中,利用余弦定理列出关系式,将 AB, DA 以及 cosA 的值代入表示出 BD2,两者相等求出 cosC 的值,确定出 C 的度 数,进而求出 BD 的长; (2)由 C 的度数求出 A 的度数,利用三角形面积公式求出三角形 ABD 与三角形 BCD 面积,之和即为四边形 ABCD 面积. 【解答】解:(1)在△BCD 中,BC=3,CD=2, 由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①, 在△ABD 中,AB=1,DA=2,A+C=π, 由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②, 由①②得:cosC= , 则 C=60°,BD= ;(2)∵cosC= ,cosA=﹣ , ∴sinC=sinA= ,则 S= AB•DAsinA+ BC•CDsinC= ×1×2× +×3×2× =2 .第 18 页(共 28 页) 【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公 式,熟练掌握余弦定理是解本题的关键. 18.(12 分)如图,四棱锥 P﹣ABCD 中,底面 ABCD 为矩形,PA⊥平面 ABCD, E 为 PD 的中点. (Ⅰ)证明:PB∥平面 AEC; (Ⅱ)设 AP=1,AD= ,三棱锥 P﹣ABD 的体积 V= ,求 A 到平面 PBC 的距离 .【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MK:点、线、 面间的距离计算.菁优网版权所有 【专题】5F:空间位置关系与距离. 【分析】(Ⅰ)设 BD 与 AC 的交点为 O,连结 EO,通过直线与平面平行的判定 定理证明 PB∥平面 AEC; (Ⅱ)通过 AP=1,AD= ,三棱锥 P﹣ABD 的体积 V= ,求出 AB,作 AH⊥PB 角 PB 于 H,说明 AH 就是 A 到平面 PBC 的距离.通过解三角形求解即可. 【解答】解:(Ⅰ)证明:设 BD 与 AC 的交点为 O,连结 EO, ∵ABCD 是矩形, ∴O 为 BD 的中点 第 19 页(共 28 页) ∵E 为 PD 的中点, ∴EO∥PB. EO⊂平面 AEC,PB⊄平面 AEC ∴PB∥平面 AEC; (Ⅱ)∵AP=1,AD= ,三棱锥 P﹣ABD 的体积 V= ,∴V= =,∴AB= ,PB= =.作 AH⊥PB 交 PB 于 H, 由题意可知 BC⊥平面 PAB, ∴BC⊥AH, 故 AH⊥平面 PBC. 又在三角形 PAB 中,由射影定理可得: A 到平面 PBC 的距离 .【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力 以及计算能力. 19.(12 分)某市为了考核甲、乙两部门的工作情况,随机访问了 50 位市民, 根据这 50 位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎 叶图如图: 第 20 页(共 28 页) (Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于 90 的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价. 【考点】BA:茎叶图;BB:众数、中位数、平均数;CB:古典概型及其概率计 算公式.菁优网版权所有 【专题】5I:概率与统计. 【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首 先要排序,然后再找, (Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了. (Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可. 【解答】解:(Ⅰ)由茎叶图知,50 位市民对甲部门的评分有小到大顺序,排 在排在第 25,26 位的是 75,75,故样本的中位数是 75,所以该市的市民对 甲部门的评分的中位数的估计值是 75. 50 位市民对乙部门的评分有小到大顺序,排在排在第 25,26 位的是 66,68,故 样本的中位数是 =67,所以该市的市民对乙部门的评分的中位数的估计 值是 67. (Ⅱ)由茎叶图知,50 位市民对甲、乙部门的评分高于 90 的比率分别为 ,故该市的市民对甲、乙两部门的评分高于 90 的概率得估计值分别为 0.1,0.16, (Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数, 而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差, 说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、 第 21 页(共 28 页) 评价差异较大. 【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计 知识,属于基础题. 20.(12 分)设 F1,F2 分别是 C: +=1(a>b>0)的左,右焦点,M 是 C 上一点且 MF2 与 x 轴垂直,直线 MF1 与 C 的另一个交点为 N. (1)若直线 MN 的斜率为 ,求C 的离心率; (2)若直线 MN 在 y 轴上的截距为 2,且|MN|=5|F1N|,求 a,b. 【考点】K4:椭圆的性质.菁优网版权所有 【专题】5E:圆锥曲线中的最值与范围问题. 【分析】(1)根据条件求出 M 的坐标,利用直线 MN 的斜率为 ,建立关于a, c 的方程即可求 C 的离心率; (2)根据直线 MN 在 y 轴上的截距为 2,以及|MN|=5|F1N|,建立方程组关系, 求出 N 的坐标,代入椭圆方程即可得到结论. 【解答】解:(1)∵M 是 C 上一点且 MF2 与 x 轴垂直, ∴M 的横坐标为 c,当 x=c 时,y= ,即 M(c, ), 若直线 MN 的斜率为 , 即 tan∠MF1F2= ,即 b2= 即 c2+ 则=a2﹣c2, ﹣a2=0, ,即 2e2+3e﹣2=0 解得 e= 或 e=﹣2(舍去), 第 22 页(共 28 页) 即 e= . (Ⅱ)由题意,原点 O 是 F1F2 的中点,则直线 MF1 与 y 轴的交点 D(0,2)是线 段 MF1 的中点, 设 M(c,y),(y>0), 则,即 ,解得 y= ,∵OD 是△MF1F2 的中位线, =4,即 b2=4a, ∴由|MN|=5|F1N|, 则|MF1|=4|F1N|, 解得|DF1|=2|F1N|, 即设 N(x1,y1),由题意知 y1<0, 则(﹣c,﹣2)=2(x1+c,y1). 即,即 代入椭圆方程得 ,将 b2=4a 代入得 解得 a=7,b= ,.第 23 页(共 28 页) 【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解 决本题的关键,综合性较强,运算量较大,有一定的难度. 21.(12 分)已知函数 f(x)=x3﹣3×2+ax+2,曲线 y=f(x)在点(0,2)处的 切线与 x 轴交点的横坐标为﹣2. (Ⅰ)求 a; (Ⅱ)证明:当 k<1 时,曲线 y=f(x)与直线 y=kx﹣2 只有一个交点. 【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线 方程.菁优网版权所有 【专题】53:导数的综合应用. 【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求 a; (Ⅱ)构造函数 g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得 到结论. 【解答】解:(Ⅰ)函数的导数 f′(x)=3×2﹣6x+a;f′(0)=a; 则 y=f(x)在点(0,2)处的切线方程为 y=ax+2, ∵切线与 x 轴交点的横坐标为﹣2, ∴f(﹣2)=﹣2a+2=0, 解得 a=1. (Ⅱ)当 a=1 时,f(x)=x3﹣3×2+x+2, 设 g(x)=f(x)﹣kx+2=x3﹣3×2+(1﹣k)x+4, 由题设知 1﹣k>0, 当 x≤0 时,g′(x)=3×2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0) =4, 当 x>0 时,令 h(x)=x3﹣3×2+4,则 g(x)=h(x)+(1﹣k)x>h(x). 第 24 页(共 28 页) 则 h′(x)=3×2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增, ∴在 x=2 时,h(x)取得极小值 h(2)=0, g(﹣1)=k﹣1,g(0)=4, 则 g(x)=0 在(﹣∞,0]有唯一实根. ∵g(x)>h(x)≥h(2)=0, ∴g(x)=0 在(0,+∞)上没有实根. 综上当 k<1 时,曲线 y=f(x)与直线 y=kx﹣2 只有一个交点. 【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和 函数单调性之间的关系是解决本题的关键,考查学生的计算能力. 三、选修 4-1:几何证明选讲 22.(10 分)如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线 PBC 与⊙O 相交于点 B,C,PC=2PA,D 为 PC 的中点,AD 的延长线交⊙O 于点 E,证明: (Ⅰ)BE=EC; (Ⅱ)AD•DE=2PB2. 【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.菁优网版权所有 【专题】17:选作题;5Q:立体几何. 【分析】(Ⅰ)连接 OE,OA,证明 OE⊥BC,可得 E 是 的中点,从而BE=EC; (Ⅱ)利用切割线定理证明 PD=2PB,PB=BD,结合相交弦定理可得 AD•DE=2PB2 .【解答】证明:(Ⅰ)连接 OE,OA,则∠OAE=∠OEA,∠OAP=90°, ∵PC=2PA,D 为 PC 的中点, 第 25 页(共 28 页) ∴PA=PD, ∴∠PAD=∠PDA, ∵∠PDA=∠CDE, ∴∠OEA+∠CDE=∠OAE+∠PAD=90°, ∴OE⊥BC, ∴E 是 的中点, ∴BE=EC; (Ⅱ)∵PA 是切线,A 为切点,割线 PBC 与⊙O 相交于点 B,C, ∴PA2=PB•PC, ∵PC=2PA, ∴PA=2PB, ∴PD=2PB, ∴PB=BD, ∴BD•DC=PB•2PB, ∵AD•DE=BD•DC, ∴AD•DE=2PB2. 【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学 生分析解决问题的能力,属于中档题. 四、选修 4-4,坐标系与参数方程 23.在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系 ,半圆 C 的极坐标方程为 ρ=2cosθ,θ∈[0, (Ⅰ)求 C 的参数方程; ](Ⅱ)设点 D 在半圆 C 上,半圆 C 在 D 处的切线与直线 l:y= x+2 垂直,根据 第 26 页(共 28 页) (1)中你得到的参数方程,求直线 CD 的倾斜角及 D 的坐标. 【考点】QH:参数方程化成普通方程.菁优网版权所有 【专题】5S:坐标系和参数方程. 【分析】(1)利用 即可得出直角坐标方程,利用 cos2t+sin2t=1 进 而得出参数方程. (2)利用半圆 C 在 D 处的切线与直线 l:y= x+2 垂直,则直线 CD 的斜率与直 线 l 的斜率相等,即可得出直线 CD 的倾斜角及 D 的坐标. 【解答】解:(1)由半圆 C 的极坐标方程为 ρ=2cosθ,θ∈[0, ],即 ρ2=2ρcosθ ,可得 C 的普通方程为(x﹣1)2+y2=1(0≤y≤1). 可得 C 的参数方程为 (t 为参数,0≤t≤π). (2)设 D(1+cos t,sin t),由(1)知 C 是以 C(1,0)为圆心,1 为半径的上 半圆, ∵直线 CD 的斜率与直线 l 的斜率相等,∴tant= ,t= .故 D 的直角坐标为 ,即(, ). 【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、 直线与圆的位置关系,考查了推理能力与计算能力,属于中档题. 五、选修 4-5:不等式选讲 24.设函数 f(x)=|x+ |+|x﹣a|(a>0). (Ⅰ)证明:f(x)≥2; (Ⅱ)若 f(3)<5,求 a 的取值范围. 【考点】R5:绝对值不等式的解法.菁优网版权所有 【专题】59:不等式的解法及应用. 【分析】(Ⅰ)由 a>0,f(x)=|x+ |+|x﹣a|,利用绝对值三角不等式、基本 第 27 页(共 28 页) 不等式证得 f(x)≥2 成立. (Ⅱ)由 f(3)=|3+ |+|3﹣a|<5,分当 a>3 时和当 0<a≤3 时两种情况,分 别去掉绝对值,求得不等式的解集,再取并集,即得所求. 【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+ |+|x﹣a|≥|(x+ )﹣(x﹣a) |=|a+ |=a+ ≥2 =2, 故不等式 f(x)≥2 成立. (Ⅱ)∵f(3)=|3+ |+|3﹣a|<5, ∴当 a>3 时,不等式即 a+ <5,即 a2﹣5a+1<0,解得 3<a< 当 0<a≤3 时,不等式即 6﹣a+ <5,即 a2﹣a﹣1>0,求得 .<a≤3. 综上可得,a 的取值范围( ,). 【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、 分类讨论的数学思想,属于中档题. 第 28 页(共 28 页)
声明:如果本站提供的资源有问题或者不能下载,请点击页面底部的"联系我们";
本站提供的资源大部分来自网络收集整理,如果侵犯了您的版权,请联系我们删除。