2011年全国统一高考数学试卷(理科)(新课标)(含解析版)下载

2011年全国统一高考数学试卷(理科)(新课标)(含解析版)下载

  • 最近更新2022年10月14日



2011 年全国统一高考数学试卷(理科)(新课标) 一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分)复数 A. 的共轭复数是(  ) B. C.﹣i D.i 2.(5 分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(  ) A.y=2×3 C.y=﹣x2+4 D.y=2﹣|x| B.y=|x|+1 3.(5 分)执行如图的程序框图,如果输入的 N 是 6,那么输出的 p 是(  ) A.120 B.720 C.1440 D.5040 4.(5 分)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同 学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(   )A. B. C. D. 5.(5 分)已知角 θ 的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直 线 y=2x 上,则 cos2θ=(  ) A.﹣ B.﹣ C. D. 6.(5 分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧 第 1 页(共 30 页) 视图可以为(  ) A. B. C. D. 7.(5 分)设直线 l 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,l 与 C 交于 A,B 两点,|AB|为 C 的实轴长的 2 倍,则 C 的离心率为(  ) A. B. C.2 D.3 8.(5 分) 的展开式中各项系数的和为 2,则该展开式中常数项 为(  ) A.﹣40 9.(5 分)由曲线 y= ,直线 y=x﹣2 及 y 轴所围成的图形的面积为(  ) A. B.4 C. D.6 10.(5 分)已知 与 均为单位向量,其夹角为θ,有下列四个命题 P1:| + | >1⇔θ∈[0, );P2:| + |>1⇔θ∈( ,π];P3:| ﹣ |>1⇔θ∈[0 );P4:| ﹣ |>1⇔θ∈( ,π];其中的真命题是(  ) A.P1,P4 B.P1,P3 C.P2,P3 D.P2,P4 B.﹣20 C.20 D.40 ,11.(5 分)设函数 f(x)=sin(ωx+φ)+cos(ωx+φ) 小正周期为 π,且 f(﹣x)=f(x),则(  ) 的最 A.f(x)在 C.f(x)在(0, )单调递增 12.(5 分)函数 y= 的横坐标之和等于(  ) 单调递减 B.f(x)在( D.f(x)在( ,)单调递减 )单调递增 ,的图象与函数 y=2sinπx,(﹣2≤x≤4)的图象所有交点 第 2 页(共 30 页) A.8 B.6 C.4 D.2  二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)若变量 x,y 满足约束条件 ,则 z=x+2y 的最小值为   .14.(5 分)在平面直角坐标系 xOy,椭圆 C 的中心为原点,焦点 F1F2 在 x 轴上, 离心率为 .过Fl 的直线交于 A,B 两点,且△ABF2 的周长为 16,那么 C 的 方程为  15.(5 分)已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且 AB=6,BC=2 ,则棱锥 O﹣ABCD 的体积为 .  . 16.(5 分)在△ABC 中,B=60°,AC= ,则 AB+2BC 的最大值为   .  三、解答题(共 8 小题,满分 70 分) 217.(12 分)等比数列{an}的各项均为正数,且 2a1+3a2=1,a3 =9a2a6, (Ⅰ)求数列{an}的通项公式; (Ⅱ)设 bn=log3a1+log3a2+…+log3an,求数列{ }的前 n 项和. 18.(12 分)如图,四棱锥 P﹣ABCD 中,底面 ABCD 为平行四边形,∠DAB=60° ,AB=2AD,PD⊥底面 ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若 PD=AD,求二面角 A﹣PB﹣C 的余弦值. 第 3 页(共 30 页) 19.(12 分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量 越好,且质量指标值大于或等于 102 的产品为优质品,现用两种新配方(分 别称为 A 配方和 B 配方)做试验,各生产了 100 件这种产品,并测量了每件 产品的质量指标值,得到下面试验结果: A 配方的频数分布表 指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110] 820 42 22 8频数 B 配方的频数分布表 指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110] 12 4232 10 (Ⅰ)分别估计用 A 配方,B 配方生产的产品的优质品率; 4频数 (Ⅱ)已知用 B 配方生成的一件产品的利润 y(单位:元)与其质量指标值 t 的 关系式为 y= 从用 B 配方生产的产品中任取一件,其利润记为 X(单位:元),求 X 的分布列 及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质 量指标值落入相应组的概率) 第 4 页(共 30 页) 20.(12 分)在平面直角坐标系 xOy 中,已知点 A(0,﹣1),B 点在直线 y=﹣3 上,M 点满足 ,M 点的轨迹为曲线 C. ∥,=•(Ⅰ)求 C 的方程; (Ⅱ)P 为 C 上的动点,l 为 C 在 P 点处的切线,求 O 点到 l 距离的最小值. 21.(12 分)已知函数 f(x)= + ,曲线 y=f(x)在点(1,f(1))处的 切线方程为 x+2y﹣3=0. (Ⅰ)求 a、b 的值; (Ⅱ)如果当 x>0,且 x≠1 时,f(x)> + ,求 k 的取值范围. 22.(10 分)如图,D,E 分别为△ABC 的边 AB,AC 上的点,且不与△ABC 的 顶点重合.已知 AE 的长为 m,AC 的长为 n,AD,AB 的长是关于 x 的方程 x2﹣14x+mn=0 的两个根. (Ⅰ)证明:C,B,D,E 四点共圆; 第 5 页(共 30 页) (Ⅱ)若∠A=90°,且 m=4,n=6,求 C,B,D,E 所在圆的半径. 23.在直角坐标系 xOy 中,曲线 C1 的参数方程为 (α 为参数)M 是 C1 上的动点,P 点满足 =2 ,P 点的轨迹为曲线 C2 (Ⅰ)求 C2 的方程; (Ⅱ)在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,射线 θ= 与 C1 的异 于极点的交点为 A,与 C2 的异于极点的交点为 B,求|AB|. 24.设函数 f(x)=|x﹣a|+3x,其中 a>0. (Ⅰ)当 a=1 时,求不等式 f(x)≥3x+2 的解集 (Ⅱ)若不等式 f(x)≤0 的解集为{x|x≤﹣1},求 a 的值.  第 6 页(共 30 页) 2011 年全国统一高考数学试卷(理科)(新课标) 参考答案与试题解析  一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分)复数 A. 的共轭复数是(  ) B. C.﹣i D.i 【考点】A5:复数的运算.菁优网版权所有 【专题】11:计算题. 【分析】复数的分子、分母同乘分母的共轭复数,复数化简为 a+bi(a,b∈R) 的形式,然后求出共轭复数,即可. 【解答】解:复数 ===i,它的共轭复数为:﹣i. 故选:C. 【点评】本题是基础题,考查复数代数形式的混合运算,共轭复数的概念,常考 题型.  2.(5 分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(  ) A.y=2×3 B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x| 【考点】3K:函数奇偶性的性质与判断.菁优网版权所有 【专题】11:计算题;51:函数的性质及应用. 【分析】由函数的奇偶性和单调性的定义和性质,对选项一一加以判断,即可得 到既是偶函数又在(0,+∞)上单调递增的函数. 【解答】解:对于 A.y=2×3,由 f(﹣x)=﹣2×3=﹣f(x),为奇函数,故排除 A ;对于 B.y=|x|+1,由 f(﹣x)=|﹣x|+1=f(x),为偶函数,当 x>0 时,y=x+1, 第 7 页(共 30 页) 是增函数,故 B 正确; 对于 C.y=﹣x2+4,有 f(﹣x)=f(x),是偶函数,但 x>0 时为减函数,故排 除 C; 对于 D.y=2﹣|x|,有 f(﹣x)=f(x),是偶函数,当 x>0 时,y=2﹣x,为减函数 ,故排除 D. 故选:B. 【点评】本题考查函数的性质和运用,考查函数的奇偶性和单调性及运用,注意 定义的运用,以及函数的定义域,属于基础题和易错题.  3.(5 分)执行如图的程序框图,如果输入的 N 是 6,那么输出的 p 是(  ) A.120 B.720 C.1440 D.5040 【考点】EF:程序框图.菁优网版权所有 【专题】5K:算法和程序框图. 【分析】执行程序框图,写出每次循环 p,k 的值,当 k<N 不成立时输出 p 的值 即可. 【解答】解:执行程序框图,有 第 8 页(共 30 页) N=6,k=1,p=1 P=1,k<N 成立,有 k=2 P=2,k<N 成立,有 k=3 P=6,k<N 成立,有 k=4 P=24,k<N 成立,有 k=5 P=120,k<N 成立,有 k=6 P=720,k<N 不成立,输出 p 的值为 720. 故选:B. 【点评】本题主要考察了程序框图和算法,属于基础题.  4.(5 分)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同 学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(   )A. B. C. D. 【考点】CB:古典概型及其概率计算公式.菁优网版权所有 【专题】5I:概率与统计. 【分析】本题是一个古典概型,试验发生包含的事件数是 3×3 种结果,满足条 件的事件是这两位同学参加同一个兴趣小组有 3 种结果,根据古典概型概率 公式得到结果. 【解答】解:由题意知本题是一个古典概型, 试验发生包含的事件数是 3×3=9 种结果, 满足条件的事件是这两位同学参加同一个兴趣小组, 由于共有三个小组,则有 3 种结果, 根据古典概型概率公式得到 P= 故选:A. ,【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试 验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分 题目. 第 9 页(共 30 页)  5.(5 分)已知角 θ 的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直 线 y=2x 上,则 cos2θ=(  ) A.﹣ B.﹣ C. D. 【考点】GS:二倍角的三角函数;I5:直线的图象特征与倾斜角、斜率的关系. 菁优网版权所有 【专题】11:计算题. 【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到 tanθ 的 值,然后根据同角三角函数间的基本关系求出 cosθ 的平方,然后根据二倍角 的余弦函数公式把所求的式子化简后,把 cosθ 的平方代入即可求出值. 【解答】解:根据题意可知:tanθ=2, 所以 cos2θ= == , 则 cos2θ=2cos2θ﹣1=2× ﹣1=﹣ . 故选:B. 【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角 函数间的基本关系化简求值,是一道中档题.  6.(5 分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧 视图可以为(  ) A. B. C. D. 【考点】L7:简单空间图形的三视图.菁优网版权所有 第 10 页(共 30 页) 【专题】13:作图题. 【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱 锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的 侧视图. 【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体, 是由一个三棱锥和被轴截面截开的半个圆锥组成, ∴侧视图是一个中间有分界线的三角形, 故选:D. 【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得 到余下的三视图,本题是一个基础题.  7.(5 分)设直线 l 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,l 与 C 交于 A,B 两点,|AB|为 C 的实轴长的 2 倍,则 C 的离心率为(  ) A. B. C.2 D.3 【考点】KC:双曲线的性质.菁优网版权所有 【专题】11:计算题. 【分析】不妨设双曲线 C: ,焦点 F(﹣c,0),由题设知 ,,由此能够推导出 C 的离心率. 【解答】解:不妨设双曲线 C: 焦点 F(﹣c,0),对称轴 y=0, ,由题设知 ,,∴,b2=2a2, 第 11 页(共 30 页) c2﹣a2=2a2, c2=3a2, ∴e= .故选:B. 【点评】本题考查双曲线的性质和应用,解题时要注意公式的灵活运用.  8.(5 分) 为(  ) A.﹣40 的展开式中各项系数的和为 2,则该展开式中常数项 B.﹣20 C.20 D.40 【考点】DA:二项式定理.菁优网版权所有 【专题】11:计算题. 【分析】给 x 赋值 1 求出各项系数和,列出方程求出 a;将问题转化为二项式的 系数和;利用二项展开式的通项公式求出通项,求出特定项的系数. 【解答】解:令二项式中的 x 为 1 得到展开式的各项系数和为 1+a ∴1+a=2 ∴a=1 ∴==∴展开式中常数项为 展开式的通项为 Tr+1=(﹣1)r25﹣rC5 x5﹣2r 令 5﹣2r=1 得 r=2;令 5﹣2r=﹣1 得 r=3 的的系数和 r∵23展开式中常数项为 8C5 ﹣4C5 =40 故选:D. 【点评】本题考查求系数和问题常用赋值法、考查利用二项展开式的通项公式解 决二项展开式的特定项问题. 第 12 页(共 30 页)  9.(5 分)由曲线 y= ,直线 y=x﹣2 及 y 轴所围成的图形的面积为(  ) A. B.4 C. D.6 【考点】69:定积分的应用.菁优网版权所有 【专题】11:计算题. 【分析】利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线 y= ,直线 y=x﹣2 的交点,确定出积分区间和被积函数,利用导数和积分的关 系完成本题的求解. 【解答】解:联立方程 得到两曲线的交点(4,2), 因此曲线 y= ,直线 y=x﹣2 及 y 轴所围成的图形的面积为: S= .故选 C. 【点评】本题考查曲边图形面积的计算问题,考查学生分析问题解决问题的能力 和意识,考查学生的转化与化归能力和运算能力,考查学生对定积分与导数 的联系的认识,求定积分关键要找准被积函数的原函数,属于定积分的简单 应用问题.  10.(5 分)已知 与 均为单位向量,其夹角为θ,有下列四个命题 P1:| + | 第 13 页(共 30 页) >1⇔θ∈[0, );P4:| ﹣ |>1⇔θ∈( ,π];其中的真命题是(  ) A.P1,P4 B.P1,P3 C.P2,P3 D.P2,P4 );P2:| + |>1⇔θ∈( ,π];P3:| ﹣ |>1⇔θ∈[0 ,【考点】91:向量的概念与向量的模;9B:向量加减混合运算;9E:向量数乘和 线性运算.菁优网版权所有 【分析】利用向量长度与向量数量积之间的关系进行转化求解是解决本题的关 键,要列出关于夹角的不等式,通过求解不等式得出向量夹角的范围. 【解答】解:由 ,得出 2﹣2cosθ>1,即 cosθ< ,又θ∈[0,π],故 可以得出 θ∈( ,π],故 P3 错误,P4 正确. 由| + |>1,得出 2+2cosθ>1,即 cosθ>﹣ ,又 θ∈[0,π],故可以得出 θ∈[0 ,),故 P2 错误,P1 正确. 故选:A. 【点评】本题考查三角不等式的求解,考查向量长度不等式的等价转化,考查向 量数量积与向量长度之间的联系问题,弄清向量夹角与向量数量积的依赖关 系,考查学生分析问题解决问题的思路与方法,考查学生解题的转化与化归 能力.  11.(5 分)设函数 f(x)=sin(ωx+φ)+cos(ωx+φ) 小正周期为 π,且 f(﹣x)=f(x),则(  ) 的最 A.f(x)在 单调递减 B.f(x)在( D.f(x)在( ,,)单调递减 )单调递增 C.f(x)在(0, )单调递增 【考点】H5:正弦函数的单调性;HK:由 y=Asin(ωx+φ)的部分图象确定其解 析式.菁优网版权所有 【专题】57:三角函数的图像与性质. 第 14 页(共 30 页) 【分析】利用辅助角公式将函数表达式进行化简,根据周期与 ω 的关系确定出 ω 的值,根据函数的偶函数性质确定出 φ 的值,再对各个选项进行考查筛选. 【解答】解:由于 f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)= ,由于该函数的最小正周期为 T= 又根据 f(﹣x)=f(x),得 φ+ 因此,f(x)= ,得出 ω=2, +kπ(k∈Z),以及|φ|< ,得出φ= cos2x, =.若 x∈ ,则 2x∈(0,π),从而 f(x)在 ),则 2x∈( ), 单调递减, 若 x∈( ,,该区间不为余弦函数的单调区间,故 B,C,D 都错,A 正确. 故选:A. 【点评】本题考查三角函数解析式的确定问题,考查辅助角公式的运用,考查三 角恒等变换公式的逆用等问题,考查学生分析问题解决问题的能力和意识, 考查学生的整体思想和余弦曲线的认识和把握.属于三角中的基本题型.  12.(5 分)函数 y= 的图象与函数 y=2sinπx,(﹣2≤x≤4)的图象所有交点 的横坐标之和等于(  ) A.8 B.6 C.4 D.2 【考点】57:函数与方程的综合运用.菁优网版权所有 【专题】51:函数的性质及应用;54:等差数列与等比数列. 【分析】函数 y1= 与 y2=2sinπx 的图象有公共的对称中心(1,0),作出两个 函数的图象,利用数形结合思想能求出结果. 【解答】解:函数 y1= ,y2=2sinπx 的图象有公共的对称中心(1,0), 作出两个函数的图象,如图, 当 1<x≤4 时,y1<0 第 15 页(共 30 页) 而函数 y2 在(1,4)上出现 1.5 个周期的图象, 在(1, )和( , )上是减函数; 在( , )和( ,4)上是增函数. ∴函数 y1 在(1,4)上函数值为负数, 且与 y2 的图象有四个交点 E、F、G、H 相应地,y1 在(﹣2,1)上函数值为正数, 且与 y2 的图象有四个交点 A、B、C、D 且:xA+xH=xB+xG=xC+xF=xD+xE=2, 故所求的横坐标之和为 8. 故选:A. 【点评】本题考查两个函数的图象的交点的横坐标之和的求法,是基础题,解题 时要认真审题,注意数形结合思想的合理运用.  二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)若变量 x,y 满足约束条件 ,则 z=x+2y 的最小值为 ﹣6  .【考点】7C:简单线性规划.菁优网版权所有 【专题】11:计算题. 【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把 目标函数 z=x+2y 变化为 y=﹣ x+ ,当直线沿着 y 轴向上移动时,z 的值随着 第 16 页(共 30 页) 增大,当直线过 A 点时,z 取到最小值,求出两条直线的交点坐标,代入目标 函数得到最小值. 【解答】解:在坐标系中画出约束条件的可行域, 得到的图形是一个平行四边形, 目标函数 z=x+2y, 变化为 y=﹣ x+ , 当直线沿着 y 轴向上移动时,z 的值随着增大, 当直线过 A 点时,z 取到最小值, 由 y=x﹣9 与 2x+y=3 的交点得到 A(4,﹣5) ∴z=4+2(﹣5)=﹣6 故答案为:﹣6. 【点评】本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中, 找出满足条件的点,把点的坐标代入,求出最值.  14.(5 分)在平面直角坐标系 xOy,椭圆 C 的中心为原点,焦点 F1F2 在 x 轴上, 离心率为 .过Fl 的直线交于 A,B 两点,且△ABF2 的周长为 16,那么 C 的 方程为  +=1 . 第 17 页(共 30 页) 【考点】K4:椭圆的性质.菁优网版权所有 【专题】11:计算题;16:压轴题. 【分析】根据题意,△ABF2 的周长为 16,即 BF2+AF2+BF1+AF1=16,结合椭圆的定 义,有 4a=16,即可得 a 的值;又由椭圆的离心率,可得 c 的值,进而可得 b 的值;由椭圆的焦点在 x 轴上,可得椭圆的方程. 【解答】解:根据题意,△ABF2 的周长为 16,即 BF2+AF2+BF1+AF1=16; 根据椭圆的性质,有 4a=16,即 a=4; 椭圆的离心率为 ,即= ,则 a= c, 将 a= c,代入可得,c=2 ,则 b2=a2﹣c2=8; 则椭圆的方程为 +=1; 故答案为: +=1. 【点评】本题考查椭圆的性质,此类题型一般与焦点三角形联系,难度一般不大 ;注意结合椭圆的基本几何性质解题即可.  15.(5 分)已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且 AB=6,BC=2 ,则棱锥 O﹣ABCD 的体积为 8  . 【考点】LF:棱柱、棱锥、棱台的体积.菁优网版权所有 【专题】11:计算题;16:压轴题. 【分析】由题意求出矩形的对角线的长,结合球的半径,球心到矩形的距离,满 足勾股定理,求出棱锥的高,即可求出棱锥的体积. 【解答】解:矩形的对角线的长为: 离为: =2, ,所以球心到矩形的距 所以棱锥 O﹣ABCD 的体积为: 故答案为:8 =8 .第 18 页(共 30 页) 【点评】本题是基础题,考查球内几何体的体积的计算,考查计算能力,空间想 象能力,常考题型.  16.(5 分)在△ABC 中,B=60°,AC= ,则 AB+2BC 的最大值为 2  . 【考点】HR:余弦定理.菁优网版权所有 【专题】11:计算题;16:压轴题. 【分析】设 AB=c AC=b BC=a 利用余弦定理和已知条件求得 a 和 c 的关系,设 c+2a=m 代入,利用判别大于等于 0 求得 m 的范围,则 m 的最大值可得. 【解答】解:设 AB=c AC=b BC=a 由余弦定理 cosB= 所以 a2+c2﹣ac=b2=3 设 c+2a=m 代入上式得 7a2﹣5am+m2﹣3=0 △=84﹣3m2≥0 故 m≤2 当 m=2 时,此时 a= 因此最大值为 2 ,c= 符合题意 另解:因为 B=60°,A+B+C=180°,所以 A+C=120°, 由正弦定理,有 ====2, 所以 AB=2sinC,BC=2sinA. 所以 AB+2BC=2sinC+4sinA=2sin(120°﹣A)+4sinA =2(sin120°cosA﹣cos120°sinA)+4sinA =cosA+5sinA 第 19 页(共 30 页) =2 sin(A+φ),(其中 sinφ= ,cosφ= )所以 AB+2BC 的最大值为 2 故答案为:2 .【点评】本题主要考查了余弦定理的应用.涉及了解三角形和函数思想的运用.  三、解答题(共 8 小题,满分 70 分) 217.(12 分)等比数列{an}的各项均为正数,且 2a1+3a2=1,a3 =9a2a6, (Ⅰ)求数列{an}的通项公式; (Ⅱ)设 bn=log3a1+log3a2+…+log3an,求数列{ }的前 n 项和. 【考点】88:等比数列的通项公式;8E:数列的求和.菁优网版权所有 【专题】54:等差数列与等比数列. 2【分析】(Ⅰ)设出等比数列的公比 q,由 a3 =9a2a6,利用等比数列的通项公式 化简后得到关于 q 的方程,由已知等比数列的各项都为正数,得到满足题意 q 的值,然后再根据等比数列的通项公式化简 2a1+3a2=1,把求出的 q 的值代入 即可求出等比数列的首项,根据首项和求出的公比 q 写出数列的通项公式即 可; (Ⅱ)把(Ⅰ)求出数列{an}的通项公式代入设 bn=log3a1+log3a2+…+log3an,利用 对数的运算性质及等差数列的前 n 项和的公式化简后,即可得到 bn 的通项公 式,求出倒数即为 的通项公式,然后根据数列的通项公式列举出数列的各 项,抵消后即可得到数列{ }的前 n 项和. 222【解答】解:(Ⅰ)设数列{an}的公比为 q,由 a3 =9a2a6 得 a3 =9a4 ,所以 q2= .由条件可知各项均为正数,故 q= . 由 2a1+3a2=1 得 2a1+3a1q=1,所以 a1= . 故数列{an}的通项式为 an= .第 20 页(共 30 页) (Ⅱ)bn= ++…+ =﹣2( ﹣ +…+ =﹣2[(1﹣ )+( ﹣ )+…+( ﹣ =﹣(1+2+…+n)=﹣ ,故则=﹣ )+)]=﹣ ,所以数列{ }的前 n 项和为﹣ .【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算 性质及等差数列的前 n 项和的公式,会进行数列的求和运算,是一道中档题.  18.(12 分)如图,四棱锥 P﹣ABCD 中,底面 ABCD 为平行四边形,∠DAB=60° ,AB=2AD,PD⊥底面 ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若 PD=AD,求二面角 A﹣PB﹣C 的余弦值. 【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.菁优网版权所有 【专题】11:计算题;14:证明题;15:综合题;31:数形结合;35:转化思想 .【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得 BD= ,利用勾股 定理证明 BD⊥AD,根据 PD⊥底面 ABCD,易证 BD⊥PD,根据线面垂直的判 定定理和性质定理,可证 PA⊥BD; (Ⅱ)建立空间直角坐标系,写出点 A,B,C,P 的坐标,求出向量 ,和平面 PAB 的法向量,平面 PBC 的法向量,求出这两个向量的夹角的余弦 值即可. 【解答】(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得 BD= ,第 21 页(共 30 页) 从而 BD2+AD2=AB2,故 BD⊥AD 又 PD⊥底面 ABCD,可得 BD⊥PD 所以 BD⊥平面 PAD.故 PA⊥BD (Ⅱ)如图,以 D 为坐标原点,AD 的长为单位长, 射线 DA 为 x 轴的正半轴建立空间直角坐标系 D﹣xyz,则 A(1,0,0),B(0, ,0),C(﹣1, ,0),P(0,0,1). =(﹣1, ,0), =(0, ,﹣1), =(﹣1,0,0), 设平面 PAB 的法向量为 =(x,y,z),则 即,因此可取 =( ,1, )设平面 PBC 的法向量为 =(x,y,z),则 ,即: 可取 =(0,1, ),cos< >= =故二面角 A﹣PB﹣C 的余弦值为: .【点评】此题是个中档题.考查线面垂直的性质定理和判定定理,以及应用空间 向量求空间角问题,查了同学们观察、推理以及创造性地分析问题、解决问 题能力.  第 22 页(共 30 页) 19.(12 分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量 越好,且质量指标值大于或等于 102 的产品为优质品,现用两种新配方(分 别称为 A 配方和 B 配方)做试验,各生产了 100 件这种产品,并测量了每件 产品的质量指标值,得到下面试验结果: A 配方的频数分布表 指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110] 820 42 22 8频数 B 配方的频数分布表 指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110] 12 4232 10 (Ⅰ)分别估计用 A 配方,B 配方生产的产品的优质品率; 4频数 (Ⅱ)已知用 B 配方生成的一件产品的利润 y(单位:元)与其质量指标值 t 的 关系式为 y= 从用 B 配方生产的产品中任取一件,其利润记为 X(单位:元),求 X 的分布列 及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质 量指标值落入相应组的概率) 【考点】B2:简单随机抽样;BB:众数、中位数、平均数;CH:离散型随机变 量的期望与方差.菁优网版权所有 【专题】11:计算题;15:综合题. 【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得 到用两种配方的产品的优质品率的估计值. (II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出 变量对应的概率,写出分布列和这组数据的期望值. 【解答】解:(Ⅰ)由试验结果知,用 A 配方生产的产品中优质的频率为 ∴用 A 配方生产的产品的优质品率的估计值为 0.3. 第 23 页(共 30 页) 由试验结果知,用 B 配方生产的产品中优质品的频率为 ∴用 B 配方生产的产品的优质品率的估计值为 0.42; (Ⅱ)用 B 配方生产的 100 件产品中,其质量指标值落入区间 [90,94),[94,102),[102,110]的频率分别为 0.04,0.54,0.42, ∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42, 即 X 的分布列为 ﹣2 XP240.04 0.54 0.42 ∴X 的数学期望值 EX=﹣2×0.04+2×0.54+4×0.42=2.68 【点评】本题考查随机抽样和样本估计总体的实际应用,考查频数,频率和样本 容量之间的关系,考查离散型随机变量的分布列和期望,本题是一个综合问 题 20.(12 分)在平面直角坐标系 xOy 中,已知点 A(0,﹣1),B 点在直线 y=﹣3 上,M 点满足 ∥,=•,M 点的轨迹为曲线 C. (Ⅰ)求 C 的方程; (Ⅱ)P 为 C 上的动点,l 为 C 在 P 点处的切线,求 O 点到 l 距离的最小值. 【考点】9S:数量积表示两个向量的夹角;KH:直线与圆锥曲线的综合.菁优网版权所有 【专题】11:计算题;15:综合题;33:函数思想;36:整体思想. 【分析】(Ⅰ)设 M(x,y),由已知得 B(x,﹣3),A(0,﹣1)并代入 ∥,=•,即可求得 M 点的轨迹 C 的方程; (Ⅱ)设 P(x0,y0)为 C 上的点,求导,写出 C 在 P 点处的切线方程,利用点 到直线的距离公式即可求得 O 点到 l 距离,然后利用基本不等式求出其最小 值. 【解答】解:(Ⅰ)设 M(x,y),由已知得 B(x,﹣3),A(0,﹣1). 第 24 页(共 30 页) 所=(﹣x,﹣1﹣y), =(0,﹣3﹣y), =(x,﹣2). 再由题意可知( )• =0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0. 所以曲线 C 的方程式为 y= ﹣2. (Ⅱ)设 P(x0,y0)为曲线 C:y= 为 x0, ﹣2 上一点,因为 y′= x,所以 l 的斜率 2因此直线 l 的方程为 y﹣y0= x0(x﹣x0),即 x0x﹣2y+2y0﹣x0 =0. 则 o 点到 l 的距离 d= .又 y0= ﹣2, 所以 d= =≥2, 2所以 x0 =0 时取等号,所以 O 点到 l 距离的最小值为 2. 【点评】此题是个中档题.考查向量与解析几何的交汇点命题及代入法求轨迹方 程,以及导数的几何意义和点到直线的距离公式,综合性强,考查了同学们 观察、推理以及创造性地分析问题、解决问题的能力.  21.(12 分)已知函数 f(x)= + ,曲线 y=f(x)在点(1,f(1))处的 切线方程为 x+2y﹣3=0. (Ⅰ)求 a、b 的值; (Ⅱ)如果当 x>0,且 x≠1 时,f(x)> + ,求 k 的取值范围. 【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方 程.菁优网版权所有 【专题】15:综合题;16:压轴题;32:分类讨论;35:转化思想. 【分析】(I)求出函数的导数;利用切线方程求出切线的斜率及切点;利用函 数在切点处的导数值为曲线切线的斜率及切点也在曲线上,列出方程组,求 第 25 页(共 30 页) 出 a,b 值. (II)将不等式变形,构造新函数,求出新函数的导数,对参数 k 分类讨论,判 断出导函数的符号,得到函数的单调性,求出函数的最值,求出参数 k 的范 围. 【解答】解:由题意 f(1)=1,即切点坐标是(1,1) (Ⅰ) 由于直线 x+2y﹣3=0 的斜率为 ,且过点(1,1),故 即解得 a=1,b=1. (Ⅱ)由(Ⅰ)知 ,所以 ). 考虑函数 (x>0),则 .(i)设 k≤0,由 1)=0,故 知,当 x≠1 时,h′(x)<0.而 h( 当 x∈(0,1)时,h′(x)<0,可得 当 x∈(1,+∞)时,h′(x)<0,可得 ;h(x)>0 从而当 x>0,且 x≠1 时,f(x)﹣( (ii)设 0<k<1.由于当 x∈(1, )>0,而 + )>0,即 f(x)> + . )时,(k﹣1)(x2+1)+2x>0,故 h′(x h(1)=0,故当 x∈(1, )时,h(x)>0,可得 h(x)<0,与题设矛 盾. 第 26 页(共 30 页) (iii)设 k≥1.此时 h′(x)>0,而 h(1)=0,故当 x∈(1,+∞)时,h(x)>0 ,可得 h(x)<0,与题设矛盾. 综合得,k 的取值范围为(﹣∞,0]. 【点评】本题考查导数的几何意义:函数在切点处的导数值是切线的斜率、考查 构造函数,通过导数研究函数的单调性,求出函数的最值、考查了分类讨论 的数学思想方法.  22.(10 分)如图,D,E 分别为△ABC 的边 AB,AC 上的点,且不与△ABC 的 顶点重合.已知 AE 的长为 m,AC 的长为 n,AD,AB 的长是关于 x 的方程 x2﹣14x+mn=0 的两个根. (Ⅰ)证明:C,B,D,E 四点共圆; (Ⅱ)若∠A=90°,且 m=4,n=6,求 C,B,D,E 所在圆的半径. 【考点】N7:圆周角定理;NC:与圆有关的比例线段.菁优网版权所有 【专题】11:计算题;14:证明题. 【分析】(I)做出辅助线,根据所给的 AE 的长为 m,AC 的长为 n,AD,AB 的 长是关于 x 的方程 x2﹣14x+mn=0 的两个根,得到比例式,根据比例式得到三 角形相似,根据相似三角形的对应角相等,得到结论. (II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取 CE 的中点 G,DB 的中点 F,分别过 G,F 作 AC,AB 的垂线,两垂线相交于 H 点,连接 DH ,根据四点共圆得到半径的大小. 【解答】解:(I)连接 DE,根据题意在△ADE 和△ACB 中, AD×AB=mn=AE×AC, 第 27 页(共 30 页) 即又∠DAE=∠CAB,从而△ADE∽△ACB 因此∠ADE=∠ACB ∴C,B,D,E 四点共圆. (Ⅱ)m=4,n=6 时,方程 x2﹣14x+mn=0 的两根为 x1=2,x2=12. 故 AD=2,AB=12. 取 CE 的中点 G,DB 的中点 F,分别过 G,F 作 AC,AB 的垂线,两垂线相交于 H 点,连接 DH. ∵C,B,D,E 四点共圆, ∴C,B,D,E 四点所在圆的圆心为 H,半径为 DH. 由于∠A=90°,故 GH∥AB,HF∥AC.HF=AG=5,DF= (12﹣2)=5. 故 C,B,D,E 四点所在圆的半径为 5 【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的 解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.  23.在直角坐标系 xOy 中,曲线 C1 的参数方程为 (α 为参数)M 是 C1 上的动点,P 点满足 =2 ,P 点的轨迹为曲线 C2 (Ⅰ)求 C2 的方程; (Ⅱ)在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,射线 θ= 与 C1 的异 于极点的交点为 A,与 C2 的异于极点的交点为 B,求|AB|. 【考点】J3:轨迹方程;Q4:简单曲线的极坐标方程.菁优网版权所有 【专题】11:计算题;16:压轴题. 第 28 页(共 30 页) 【分析】(I)先设出点 P 的坐标,然后根据点 P 满足的条件代入曲线 C1 的方程 即可求出曲线 C2 的方程; (II)根据(I)将求出曲线 C1 的极坐标方程,分别求出射线 θ= 与 C1 的交点 A 的 极 径 为ρ1 , 以 及 射 线θ= 与 C2 的 交 点B 的 极 径 为ρ2 , 最 后 根 据 |AB|=|ρ2﹣ρ1|求出所求. 【解答】解:(I)设 P(x,y),则由条件知 M( , ).由于M 点在 C1 上, 所以 即从而 C2 的参数方程为 (α 为参数) (Ⅱ)曲线 C1 的极坐标方程为 ρ=4sinθ,曲线 C2 的极坐标方程为 ρ=8sinθ. 射线 θ= 与 C1 的交点 A 的极径为 ρ1=4sin 射线 θ= 与 C2 的交点 B 的极径为 ρ2=8sin ,.所以|AB|=|ρ2﹣ρ1|= .【点评】本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的 度量,属于中档题.  24.设函数 f(x)=|x﹣a|+3x,其中 a>0. (Ⅰ)当 a=1 时,求不等式 f(x)≥3x+2 的解集 (Ⅱ)若不等式 f(x)≤0 的解集为{x|x≤﹣1},求 a 的值. 【考点】R5:绝对值不等式的解法.菁优网版权所有 【专题】11:计算题;16:压轴题;32:分类讨论. 【分析】(Ⅰ)当 a=1 时,f(x)≥3x+2 可化为|x﹣1|≥2.直接求出不等式 f( x)≥3x+2 的解集即可. 第 29 页(共 30 页) (Ⅱ)由 f(x)≤0 得|x﹣a|+3x≤0 分 x≥a 和 x≤a 推出等价不等式组,分别求 解,然后求出 a 的值. 【解答】解:(Ⅰ)当 a=1 时,f(x)≥3x+2 可化为 |x﹣1|≥2. 由此可得 x≥3 或 x≤﹣1. 故不等式 f(x)≥3x+2 的解集为 {x|x≥3 或 x≤﹣1}. (Ⅱ)由 f(x)≤0 得 |x﹣a|+3x≤0 此不等式化为不等式组 或即或因为 a>0,所以不等式组的解集为{x|x 由题设可得﹣ =﹣1,故 a=2 }【点评】本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用, 考查计算能力,常考题型. 第 30 页(共 30 页)

分享到 :
相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注