2010年全国统一高考数学试卷(文科)(大纲版ⅰ)(含解析版)下载

2010年全国统一高考数学试卷(文科)(大纲版ⅰ)(含解析版)下载

  • 最近更新2022年10月14日



2010 年全国统一高考数学试卷(文科)(大纲版Ⅰ) 一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分)cos300°=(  ) A. B.﹣ C. D. 2.(5 分)设全集 U={1,2,3,4,5},集合 M={1,4},N={1,3,5},则 N∩ (∁UM)=(  ) A.{1,3} B.{1,5} C.{3,5} D.{4,5} 3.(5 分)若变量 x,y 满足约束条件 ,则 z=x﹣2y 的最大值为(  ) A.4 B.3 C.2 D.1 4.(5 分)已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则 a4a5a6= (  ) A. B.7 C.6 D. 5.(5 分)(1﹣x)4(1﹣ )3 的展开式 x2 的系数是(  ) A.﹣6 B.﹣3 C.0 D.3 6.(5 分)直三棱柱 ABC﹣A1B1C1 中,若∠BAC=90°,AB=AC=AA1,则异面直线 BA1 与 AC1 所成的角等于(  ) A.30° B.45° C.60° D.90° 7.(5 分)已知函数 f(x)=|lgx|.若 a≠b 且,f(a)=f(b),则 a+b 的取值 范围是(  ) A.(1,+∞) B.[1,+∞) C.(2,+∞) D.[2,+∞) 8.(5 分)已知 F1、F2 为双曲线 C:x2﹣y2=1 的左、右焦点,点 P 在 C 上,∠ 第 1 页(共 23 页) F1PF2=60°,则|PF1|•|PF2|=(  ) A.2 B.4 9.(5 分)正方体 ABCD﹣A1B1C1D1 中,BB1 与平面 ACD1 所成角的余弦值为(  ) C.6 D.8 A. B. C. D. 10.(5 分)设 a=log32,b=ln2,c= A.a<b<c B.b<c<a ,则(  ) C.c<a<b D.c<b<a 11.(5 分)已知圆 O 的半径为 1,PA、PB 为该圆的两条切线,A、B 为两切点, 那么 的最小值为(  ) A. B. C. D. 12.(5 分)已知在半径为 2 的球面上有 A、B、C、D 四点,若 AB=CD=2,则四 面体 ABCD 的体积的最大值为(  ) A. B. C. D.  二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)不等式 的解集是  . 14.(5 分)已知 α 为第二象限角,sinα= ,则 tan2α=   . 15.(5 分)某学校开设 A 类选修课 3 门,B 类选修课 4 门,一位同学从中共选 3 门,若要求两类课程中各至少选一门,则不同的选法共有   种.(用 数字作答) 16.(5 分)已知 F 是椭圆 C 的一个焦点,B 是短轴的一个端点,线段 BF 的延长 线交 C 于点 D,且 ,则C 的离心率为 .  三、解答题(共 6 小题,满分 70 分) 17.(10 分)记等差数列{an}的前 n 项和为 Sn,设 S3=12,且 2a1,a2,a3+1 成 等比数列,求 Sn. 第 2 页(共 23 页) 18.(12 分)已知△ABC 的内角 A,B 及其对边 a,b 满足 a+b=acotA+bcotB,求 内角 C. 19.(12 分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位 初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用; 若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复 审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审 的概率均为 0.5,复审的稿件能通过评审的概率为 0.3.各专家独立评审. (Ⅰ)求投到该杂志的 1 篇稿件被录用的概率; (Ⅱ)求投到该杂志的 4 篇稿件中,至少有 2 篇被录用的概率. 20.(12 分)如图,四棱锥 S﹣ABCD 中,SD⊥底面 ABCD,AB∥DC,AD⊥DC, AB=AD=1,DC=SD=2,E 为棱 SB 上的一点,平面 EDC⊥平面 SBC. (Ⅰ)证明:SE=2EB; (Ⅱ)求二面角 A﹣DE﹣C 的大小. 第 3 页(共 23 页) 21.(12 分)求函数 f(x)=x3﹣3x 在[﹣3,3]上的最值. 22.(12 分)已知抛物线 C:y2=4x 的焦点为 F,过点 K(﹣1,0)的直线 l 与 C 相交于 A、B 两点,点 A 关于 x 轴的对称点为 D. (Ⅰ)证明:点 F 在直线 BD 上; (Ⅱ)设 ,求△BDK 的内切圆 M 的方程.  第 4 页(共 23 页) 2010 年全国统一高考数学试卷(文科)(大纲版Ⅰ) 参考答案与试题解析  一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分)cos300°=(  ) A. B.﹣ C. D. 【考点】GO:运用诱导公式化简求值.菁优网版权所有 【专题】11:计算题. 【分析】利用三角函数的诱导公式,将 300°角的三角函数化成锐角三角函数求 值. 【解答】解:∵ .故选:C. 【点评】本小题主要考查诱导公式、特殊三角函数值等三角函数知识.  2.(5 分)设全集 U={1,2,3,4,5},集合 M={1,4},N={1,3,5},则 N∩ (∁UM)=(  ) A.{1,3} B.{1,5} C.{3,5} D.{4,5} 【考点】1H:交、并、补集的混合运算.菁优网版权所有 【分析】根据补集意义先求 CUM,再根据交集的意义求 N∩(CUM). 【解答】解:(CUM)={2,3,5},N={1,3,5},则 N∩(CUM)={1,3,5}∩ {2,3,5}={3,5}. 故选:C. 【点评】本小题主要考查集合的概念、集合运算等集合有关知识,属容易题.  第 5 页(共 23 页) 3.(5 分)若变量 x,y 满足约束条件 ,则 z=x﹣2y 的最大值为(  ) C.2 D.1 A.4 B.3 【考点】7C:简单线性规划.菁优网版权所有 【专题】11:计算题;31:数形结合. 【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y 表示直 线在 y 轴上的截距,只需求出可行域直线在 y 轴上的截距最小值即可. 【解答】解:画出可行域(如图),z=x﹣2y⇒y= x﹣ z, 由图可知, 当直线 l 经过点 A(1,﹣1)时, z 最大,且最大值为 zmax=1﹣2×(﹣1)=3. 故选:B. 【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用 几何意义求最值,属于基础题.  4.(5 分)已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则 a4a5a6= (  ) A. B.7 C.6 D. 【考点】87:等比数列的性质.菁优网版权所有 第 6 页(共 23 页) 33【分析】由数列{an}是等比数列,则有 a1a2a3=5⇒a2 =5;a7a8a9=10⇒a8 =10. 3【解答】解:a1a2a3=5⇒a2 =5; 3a7a8a9=10⇒a8 =10, 2a5 =a2a8, ∴,∴ ,故选:A. 【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化 等知识,着重考查了转化与化归的数学思想.  5.(5 分)(1﹣x)4(1﹣ )3 的展开式 x2 的系数是(  ) A.﹣6 B.﹣3 C.0 D.3 【考点】DA:二项式定理.菁优网版权所有 【分析】列举(1﹣x)4 与 可以出现 x2 的情况,通过二项式定理得到展 开式 x2 的系数. 【解答】解:将 看作两部分 与相乘,则出现 x2 的情况有: ①m=1,n=2;②m=2,n=0; 系数分别为:① =﹣12;② =6; x2 的系数是﹣12+6=﹣6 故选:A. 【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项 公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也 考查了考生的一些基本运算能力.  6.(5 分)直三棱柱 ABC﹣A1B1C1 中,若∠BAC=90°,AB=AC=AA1,则异面直线 BA1 与 AC1 所成的角等于(  ) 第 7 页(共 23 页) A.30° B.45° C.60° D.90° 【考点】LM:异面直线及其所成的角.菁优网版权所有 【专题】1:常规题型. 【分析】延长 CA 到 D,根据异面直线所成角的定义可知∠DA1B 就是异面直线 BA1 与 AC1 所成的角,而三角形 A1DB 为等边三角形,可求得此角. 【解答】解:延长 CA 到 D,使得 AD=AC,则 ADA1C1 为平行四边形, ∠DA1B 就是异面直线 BA1 与 AC1 所成的角, 又 A1D=A1B=DB= AB, 则三角形 A1DB 为等边三角形,∴∠DA1B=60° 故选:C. 【点评】本小题主要考查直三棱柱 ABC﹣A1B1C1 的性质、异面直线所成的角、异 面直线所成的角的求法,考查转化思想,属于基础题.  7.(5 分)已知函数 f(x)=|lgx|.若 a≠b 且,f(a)=f(b),则 a+b 的取值 范围是(  ) A.(1,+∞) B.[1,+∞) C.(2,+∞) D.[2,+∞) 【考点】34:函数的值域;3A:函数的图象与图象的变换;4O:对数函数的单 调性与特殊点.菁优网版权所有 【专题】11:计算题. 【分析】由已知条件 a≠b,不妨令 a<b,又 y=lgx 是一个增函数,且 f(a)=f( b),故可得,0<a<1<b,则 lga=﹣lgb,再化简整理即可求解;或采用线 第 8 页(共 23 页) 性规划问题处理也可以. 【解答】解:(方法一)因为 f(a)=f(b),所以|lga|=|lgb|, 不妨设 0<a<b,则 0<a<1<b,∴lga=﹣lgb,lga+lgb=0 ∴lg(ab)=0 ∴ab=1, 又 a>0,b>0,且 a≠b ∴(a+b)2>4ab=4 ∴a+b>2 故选:C. (方法二)由对数的定义域,设 0<a<b,且 f(a)=f(b),得: ,整理得线性规划表达式为: ,因此问题转化为求 z=x+y 的取值范围问题,则 z=x+y⇒y=﹣x+z,即求函数的截距 最值. 根据导数定义, 函数图象过点(1,1)时 z 有最小为 2( 因为是开区域,所以取不到 2), ∴a+b 的取值范围是(2,+∞). 故选:C. 【点评】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在 做本小题时极易忽视 a 的取值范围,根据条件 a>0,b>0,且 a≠b 可以利用 2重要不等式(a2+b2≥2ab,当且仅当 a=b 时取等号)列出关系式(a+b)>4ab=4 ,进而解决问题.  8.(5 分)已知 F1、F2 为双曲线 C:x2﹣y2=1 的左、右焦点,点 P 在 C 上,∠ 第 9 页(共 23 页) F1PF2=60°,则|PF1|•|PF2|=(  ) A.2 B.4 C.6 D.8 【考点】HR:余弦定理;KA:双曲线的定义;KC:双曲线的性质.菁优网版权所有 【专题】5D:圆锥曲线的定义、性质与方程. 【分析】解法 1,利用余弦定理及双曲线的定义,解方程求|PF1|•|PF2|的值. 解法 2,由焦点三角形面积公式和另一种方法求得的三角形面积相等,解出 |PF1|•|PF2|的值. 【解答】解:法 1.由双曲线方程得 a=1,b=1,c= ,由余弦定理得 cos ∠F1PF2= ∴|PF1|•|PF2|=4. 法2;由焦点三角形面积公式得:∴|PF1|•|PF2|=4; 故选:B. 【点评】本题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想 ,查考生的综合运用能力及运算能力.  9.(5 分)正方体 ABCD﹣A1B1C1D1 中,BB1 与平面 ACD1 所成角的余弦值为(  ) A. B. C. D. 【考点】MI:直线与平面所成的角;MK:点、线、面间的距离计算.菁优网版权所有 第 10 页(共 23 页) 【专题】5G:空间角. 【分析】正方体上下底面中心的连线平行于 BB1,上下底面中心的连线与平面 ACD1 所成角,即为 BB1 与平面 ACD1 所成角, 直角三角形中,利用边角关系求出此角的余弦值. 【解答】解:如图,设上下底面的中心分别为 O1,O,设正方体的棱长等于 1, 则 O1O 与平面 ACD1 所成角就是 BB1 与平面 ACD1 所成角,即∠O1OD1, 直角三角形 OO1D1 中,cos∠O1OD1= ==,故选:D. 【点评】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离 的求法,利用等体积转化求出 D 到平面 ACD1 的距离是解决本题的关键所在,这也是转化思想的具体体现,属于中档题.  10.(5 分)设 a=log32,b=ln2,c= A.a<b<c B.b<c<a ,则(  ) C.c<a<b D.c<b<a 【考点】4M:对数值大小的比较.菁优网版权所有 【专题】11:计算题;35:转化思想. 【分析】根据 a 的真数与 b 的真数相等可取倒数,使底数相同,找中间量 1 与之 比较大小,便值 a、b、c 的大小关系. 【解答】解:a=log32= ,b=ln2= ,而 log23>log2e>1,所以 a<b, 第 11 页(共 23 页) c= =,而 ,所以 c<a,综上 c<a<b, 故选:C. 【点评】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实 数大小的比较、换底公式、不等式中的倒数法则的应用.  11.(5 分)已知圆 O 的半径为 1,PA、PB 为该圆的两条切线,A、B 为两切点, 那么 的最小值为(  ) A. B. C. D. 【考点】9O:平面向量数量积的性质及其运算;JF:圆方程的综合应用.菁优网版权所有 【专题】5C:向量与圆锥曲线. 【分析】要求 的最小值,我们可以根据已知中,圆 O 的半径为 1,PA、PB 为该圆的两条切线,A、B 为两切点,结合切线长定理,设出 PA,PB 的长度 和夹角,并将 进行解答. 表示成一个关于 x 的函数,然后根据求函数最值的办法, 【解答】解:如图所示:设 OP=x(x>0), 则 PA=PB= ,∠APO=α,则∠APB=2α, sinα= , ==×(1﹣2sin2α) =(x2﹣1)(1﹣ )= =x2+ ﹣3≥2 ﹣3, ∴当且仅当 x2= 时取“=”,故 的最小值为 2 ﹣3. 第 12 页(共 23 页) 故选:D. 【点评】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的 求法﹣﹣判别式法,同时也考查了考生综合运用数学知识解题的能力及运算 能力.  12.(5 分)已知在半径为 2 的球面上有 A、B、C、D 四点,若 AB=CD=2,则四 面体 ABCD 的体积的最大值为(  ) A. B. C. D. 【考点】LF:棱柱、棱锥、棱台的体积;ND:球的性质.菁优网版权所有 【专题】11:计算题;15:综合题;16:压轴题. 【分析】四面体 ABCD 的体积的最大值,AB 与 CD 是对棱,必须垂直,确定球心 的位置,即可求出体积的最大值. 【解答】解:过 CD 作平面 PCD,使 AB⊥平面 PCD,交 AB 于 P,设点 P 到 CD 的 距离为 h, 则有 ,当直径通过 AB 与 CD 的中点时, 故选:B. ,故 .【点评】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通 第 13 页(共 23 页) 过球这个载体考查考生的空间想象能力及推理运算能力.  二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)不等式 的解集是 {x|﹣2<x<﹣1,或 x>2} . 【考点】7E:其他不等式的解法.菁优网版权所有 【分析】本题是解分式不等式,先将分母分解因式,再利用穿根法求解. 【解答】解:: ,数轴标 根得:{x|﹣2<x<﹣1,或 x>2} 故答案为:{x|﹣2<x<﹣1,或 x>2} 【点评】本小题主要考查分式不等式及其解法,属基本题.  14.(5 分)已知 α 为第二象限角,sinα= ,则 tan2α=   . 【考点】GL:三角函数中的恒等变换应用.菁优网版权所有 【专题】11:计算题;33:函数思想;49:综合法;56:三角函数的求值. 【分析】由已知求出 cosα,进一步得到 tanα,代入二倍角公式得答案. 【解答】解:∵α 为第二象限角,且 sinα= , ∴cosα= 则 tanα= ,.∴tan2α= ==.故答案为: .【点评】本题考查三角函数中的恒等变换应用,考查了同角三角函数基本关系式 及二倍角公式的应用,是基础题.  第 14 页(共 23 页) 15.(5 分)某学校开设 A 类选修课 3 门,B 类选修课 4 门,一位同学从中共选 3 门,若要求两类课程中各至少选一门,则不同的选法共有 30 种.(用数 字作答) 【考点】D5:组合及组合数公式.菁优网版权所有 【专题】11:计算题;16:压轴题;32:分类讨论. 【分析】由题意分类:(1)A 类选修课选 1 门,B 类选修课选 2 门,确定选法; (2)A 类选修课选 2 门,B 类选修课选 1 门,确定选法;然后求和即可. 【解答】解:分以下 2 种情况:(1)A 类选修课选 1 门,B 类选修课选 2 门, 12有 C3 C4 种不同的选法; (2)A 类选修课选 2 门,B 类选修课选 1 门,有 C3 C4 种不同的选法. 211221所以不同的选法共有 C3 C4 +C3 C4 =18+12=30 种. 故答案为:30 【点评】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.  16.(5 分)已知 F 是椭圆 C 的一个焦点,B 是短轴的一个端点,线段 BF 的延长 线交 C 于点 D,且 ,则 C 的离心率为 . 【考点】K4:椭圆的性质.菁优网版权所有 【专题】16:压轴题;31:数形结合. 【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求 出 D 的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关 于 a、c 的方程,解方程求出 的值. 【解答】解:如图, ,作 DD1 ⊥ y 轴 于 点D1 , 则 由 , 得 , 所 以 , ,即,由椭圆的第二定义得 第 15 页(共 23 页) 又由|BF|=2|FD|,得 故答案为: ,a2=3c2,解得 e= = ,.【点评】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考 查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助 数”,利用几何性质可寻求到简化问题的捷径.  三、解答题(共 6 小题,满分 70 分) 17.(10 分)记等差数列{an}的前 n 项和为 Sn,设 S3=12,且 2a1,a2,a3+1 成 等比数列,求 Sn. 【考点】83:等差数列的性质;85:等差数列的前 n 项和.菁优网版权所有 【专题】34:方程思想. 2【分析】由 2a1,a2,a3+1 成等比数列,可得 a2 =2a1(a3+1),结合 s3=12,可列 出关于 a1,d 的方程组,求出 a1,d,进而求出前 n 项和 sn. 【解答】解:设等差数列{an}的公差为 d,由题意得 ,解得 或,∴sn= n(3n﹣1)或 sn=2n(5﹣n). 【点评】本题考查了等差数列的通项公式和前 n 项和公式,熟记公式是解题的关 键,同时注意方程思想的应用.  第 16 页(共 23 页) 18.(12 分)已知△ABC 的内角 A,B 及其对边 a,b 满足 a+b=acotA+bcotB,求 内角 C. 【考点】GF:三角函数的恒等变换及化简求值;HP:正弦定理.菁优网版权所有 【专题】11:计算题. 【分析】先利用正弦定理题设等式中的边转化角的正弦,化简整理求得 sin(A﹣ )=sin(B+ ),进而根据 A,B 的范围,求得 A﹣ 和 B+ 的关系, 进而求得 A+B= ,则 C 的值可求. 【解答】解:由已知及正弦定理,有 sinA+sinB=sinA• +sinB• =cosA+cosB ,∴sinA﹣cosA=cosB﹣sinB ∴sin(A﹣ )=sin(B+ ∵0<A<π,0<B<π ), ∴﹣ <A﹣ ∴A﹣ +B+ <<B+ <=π, ∴A+B= ,C=π﹣(A+B)= 【点评】本题主要考查了正弦定理的应用.解题过程中关键是利用了正弦定理把 边的问题转化为角的问题.  19.(12 分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位 初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用; 若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复 审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审 的概率均为 0.5,复审的稿件能通过评审的概率为 0.3.各专家独立评审. (Ⅰ)求投到该杂志的 1 篇稿件被录用的概率; (Ⅱ)求投到该杂志的 4 篇稿件中,至少有 2 篇被录用的概率. 第 17 页(共 23 页) 【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概 率乘法公式;CA:n 次独立重复试验中恰好发生 k 次的概率.菁优网版权所有 【分析】(1)投到该杂志的 1 篇稿件被录用包括稿件能通过两位初审专家的评 审或稿件恰能通过一位初审专家的评审又能通过复审专家的评审两种情况, 这两种情况是互斥的,且每种情况中包含的事情有时相互独立的,列出算式. (2)投到该杂志的 4 篇稿件中,至少有 2 篇被录用的对立事件是 0 篇被录用,1 篇被录用两种结果,从对立事件来考虑比较简单. 【解答】解:(Ⅰ)记 A 表示事件:稿件能通过两位初审专家的评审; B 表示事件:稿件恰能通过一位初审专家的评审; C 表示事件:稿件能通过复审专家的评审; D 表示事件:稿件被录用. 则 D=A+B•C, P(A)=0.5×0.5=0.25, P(B)=2×0.5×0.5=0.5, P(C)=0.3, P(D)=P(A+B•C) =P(A)+P(B•C) =P(A)+P(B)P(C) =0.25+0.5×0.3 =0.40. (2)记 4 篇稿件有 1 篇或 0 篇被录用为事件 E, 1则 P(E)=(1﹣0.4)4+C4 ×0.4×(1﹣0.4)3 =0.1296+0.3456 =0.4752, ∴=1﹣0.4752=0.5248, 即投到该杂志的 4 篇稿件中,至少有 2 篇被录用的概率是 0.5248. 【点评】本题关键是要理解题意,实际上能否理解题意是一种能力,培养学生的 数学思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维 情趣,形成学习数学知识的积极态度. 第 18 页(共 23 页)  20.(12 分)如图,四棱锥 S﹣ABCD 中,SD⊥底面 ABCD,AB∥DC,AD⊥DC, AB=AD=1,DC=SD=2,E 为棱 SB 上的一点,平面 EDC⊥平面 SBC. (Ⅰ)证明:SE=2EB; (Ⅱ)求二面角 A﹣DE﹣C 的大小. 【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.菁优网版权所有 【专题】11:计算题;14:证明题. 【分析】(Ⅰ)连接 BD,取 DC 的中点 G,连接 BG,作 BK⊥EC,K 为垂足,根 据线面垂直的判定定理可知 DE⊥平面 SBC,然后分别求出 SE 与 EB 的长,从 而得到结论; (Ⅱ)根据边长的关系可知△ADE 为等腰三角形,取 ED 中点 F,连接 AF,连接 FG ,根据二面角平面角的定义可知∠AFG 是二面角 A﹣DE﹣C 的平面角,然后在 三角形 AGF 中求出二面角 A﹣DE﹣C 的大小. 【解答】解:(Ⅰ)连接 BD,取 DC 的中点 G,连接 BG, 由此知 DG=GC=BG=1,即△DBC 为直角三角形,故 BC⊥BD. 又 SD⊥平面 ABCD,故 BC⊥SD, 所以,BC⊥平面 BDS,BC⊥DE. 作 BK⊥EC,K 为垂足,因平面 EDC⊥平面 SBC, 故 BK⊥平面 EDC,BK⊥DE,DE 与平面 SBC 内的两条相交直线 BK、BC 都垂直, DE⊥平面 SBC,DE⊥EC,DE⊥SB. SB= DE= ,第 19 页(共 23 页) EB= 所以 SE=2EB (Ⅱ)由 SA= ,AB=1,SE=2EB,AB⊥SA,知 AE= =1,又 AD=1. 故△ADE 为等腰三角形. 取 ED 中点 F,连接 AF,则 AF⊥DE,AF= .连接 FG,则 FG∥EC,FG⊥DE. 所以,∠AFG 是二面角 A﹣DE﹣C 的平面角. 连接 AG,AG= ,FG= cos∠AFG= ,,所以,二面角 A﹣DE﹣C 的大小为 120°. 【点评】本题主要考查了与二面角有关的立体几何综合题,考查学生空间想象能 力,逻辑思维能力,是中档题.  21.(12 分)求函数 f(x)=x3﹣3x 在[﹣3,3]上的最值. 【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.菁优网版权所有 【专题】11:计算题;16:压轴题. 【分析】先求函数的极值,根据极值与最值的求解方法,将 f(x)的各极值与其 端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值. 第 20 页(共 23 页) 【解答】解:f′(x)=3×2﹣3=3(x+1)(x﹣1), 令 f′(x)=0,则 x=﹣1 或 x=1, 经验证 x=﹣1 和 x=1 为极值点,即 f(1)=﹣2 为极小值,f(﹣1)=2 为极大值. 又因为 f(﹣3)=﹣18,f(3)=18, 所以函数 f(x)的最大值为 18,最小值为﹣18. 【点评】本题主要考查了利用导数研究函数的极值,以及研究函数的最值,当然 如果连续函数在区间(a,b)内只有一个极值,那么极大值就是最大值,极 小值就是最小值,属于基础题.  22.(12 分)已知抛物线 C:y2=4x 的焦点为 F,过点 K(﹣1,0)的直线 l 与 C 相交于 A、B 两点,点 A 关于 x 轴的对称点为 D. (Ⅰ)证明:点 F 在直线 BD 上; (Ⅱ)设 ,求△BDK 的内切圆 M 的方程. 【考点】9S:数量积表示两个向量的夹角;IP:恒过定点的直线;J1:圆的标准 方程;K8:抛物线的性质;KH:直线与圆锥曲线的综合.菁优网版权所有 【专题】11:计算题;14:证明题;16:压轴题. 【分析】(Ⅰ)先根据抛物线方程求得焦点坐标,设出过点 K 的直线 L 方程代入 抛物线方程消去 x,设 L 与 C 的交点 A(x1,y1),B(x2,y2),根据韦达定 理求得 y1+y2 和 y1y2 的表达式,进而根据点 A 求得点 D 的坐标,进而表示出直 线 BD 和 BF 的斜率,进而问题转化两斜率相等,进而转化为 4×2=y22,依题意 可知等式成立进而推断出 k1=k2 原式得证. (Ⅱ)首先表示出 结果为 求得m,进而求得 y2﹣y1 的值,推知 BD 的斜 率,则 BD 方程可知,设 M 为(a,0),M 到 x= y﹣1 和到 BD 的距离相等, 进而求得 a 和圆的半径,则圆的方程可得. 【解答】解:(Ⅰ)抛物线 C:y2=4x①的焦点为 F(1,0), 第 21 页(共 23 页) 设过点 K(﹣1,0)的直线 L:x=my﹣1, 代入①,整理得 y2﹣4my+4=0, 设 L 与 C 的交点 A(x1,y1),B(x2,y2),则 y1+y2=4m,y1y2=4, 点 A 关于 X 轴的对称点 D 为(x1,﹣y1). BD 的斜率 k1= BF 的斜率 k2= ==,.要使点 F 在直线 BD 上 需 k1=k2 需 4(x2﹣1)=y2(y2﹣y1), 需 4×2=y22, 上式成立,∴k1=k2, ∴点 F 在直线 BD 上. (Ⅱ) =(x1﹣1,y1)(x2﹣1,y2)=(x1﹣1)(x2﹣1)+y1y2=(my1﹣2) (my2﹣2)+y1y2=4(m2+1)﹣8m2+4=8﹣4m2= , ∴m2= ,m=± . y2﹣y1= =4 =,∴k1= ,BD:y= (x﹣1). 易知圆心 M 在 x 轴上,设为(a,0),M 到 x= y﹣1 和到 BD 的距离相等,即 |a+1|× =|( (a﹣1)|× ,∴4|a+1|=5|a﹣1|,﹣1<a<1, 解得 a= . 第 22 页(共 23 页) ∴半径 r= , ∴△BDK 的内切圆 M 的方程为(x﹣ )2+y2= . 【点评】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直 线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的 求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证 的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求 思想. 第 23 页(共 23 页)

分享到 :
相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注