2010年北京高考理科数学试题及答案下载

2010年北京高考理科数学试题及答案下载

  • 最近更新2022年10月14日



2010 年普通高等学校招生全国统一考试 数 学(理)(北京卷) 本试卷分第Ⅰ卷和第Ⅱ卷两部分。第Ⅰ卷 1 至 2 页、第Ⅱ卷 3 至 5 页,共 150 分。考 试时长 120 分钟。考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试 卷和答题卡一并交回。 第Ⅰ卷(选择题 共40 分) 一、本大题共 8 小题,每小题 5 分,共 40 分。在每小题列出的四个选项中,选出符合题目 要求的一项。 (1) 集合P {xZ 0  x  3}, M {xZ x2  9},则 P I M =(A) 1,2 (B) 0,1,2 (C) x | 0  x  3 (D) x | 0  x  3 (2)在等比数列 (A)9 a 中, a1 1,公比 q 1.若 am  a1a2a3a4a5 ,则 m= n  (B)10 (C)11 (D)12[来源:Z|xx|k.Com] (3)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧( 左)视图分别如右图所示,则该几何体的俯视图为 (4)8 名学生和 2 位第师站成一排合影,2 位老师不相邻的排法种数为 (A) A8 A2 (B) A8C92 (C) A8 A2 (D) A8C72 898878(5)极坐标方程 ( 1)(  )  0(  0)表示的图形是 (A)两个圆 (B)两条直线 (D)一条直线和一条射线 (C)一个圆和一条射线 第 1 页 共 23 页 (6) a、b 为非零向量.“ a  b ”是“函数 f (x)  (xa  b)(xb  a) 为一次函数”的 (A)充分而不必要条件 (C)充分必要条件 (B)必要而不充分条件 (D)既不充分也不必要条件 x  y 11  0 (7)设不等式组 3x  y  3  0 表示的平面区域为 D,若指数函数 y  ax 的图像上存在 5x  3y  9  0 区域 D 上的点,则 (A)(1,3] a的取值范围是 (B )[2,3] (C ) (1,2] (D )[ 3, ](8)如图,正方体 ABCD  A B C1D1 的棱长为 2,动点 E、F 在棱 A B1 上,动 111点 P ,Q 分别在棱 AD ,CD 上,若 EF=1 , A1 E= x,DQ= y,D P= z ( x、y、z 大于零),则四面体PEFQ 的体积                            (A)与 x、y、z 都有关    (B)与    (C)与    (D)与 xyz有关,与 有关,与 有关,与 yxx、,,zzy无关 无关 无关 第 II 卷(共 110 分) 二、填空题:本大题共 6 小题,每小题 5 分,共 30 分。 2i (9)在复平面内,复数 对应的点的坐标为 。1i 2 3(10)在△ABC 中,若 b = 1,c = 3,C  ,则 a = 。(11)从某小学随机抽取 100 名同学,将他们的身高(单位:厘米)数据绘制成频率分布直 方图(如图)。由图中数据可知 a= 。若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取 18 人参加一项活动,则从身高在[140 , 第 2 页 共 23 页 150]内的学生中选取的人数应为 。[来源:学科网] (12)如图, O 的弦 ED,CB 的延长线交于点 A。若 BD AD=3,则 DE= ;CE= AE,AB=4, BC=2, 。2  2 2  2 (13)已知双曲线 1的离 心率为 2,焦点与椭圆 1的焦点相同,那么 a2 b2 25 9双曲线的焦点坐标为 ;渐近线方程为 。(14 )如图放置的边长为 1的 正方形 PABC 沿 y  f (x),则函数 f (x) 的最小正周期为 x轴滚动. 设顶点 P(x, y) 的轨迹方程是 y  f (x)在其两个相邻零点间的图象 ;与x轴所围区域的面积为 。说明:“正方形 PABC 沿 x轴滚动”包括沿 x轴正方向和沿 x轴负方向滚动。沿 轴上时,再以顶点 B 为中心顺时 轴负方向滚动。 x 轴正方向滚 动指的是先以顶点 A 为中心顺时针旋转,当顶点 B 落在 针旋转,如此继续. 类似地,正方形 PABC 可以沿 xx三、解答题:本大题共 6 小题,共 80 分。解答应写出文字说明,演算步骤或证 明过程。 (15)(本小题共 13 分) 第 3 页 共 23 页 已知函数 f (x)  2cos2x  sin2 x  4cos x. (Ⅰ)求 f ( )的值;[来源:学科网 ZXXK] 3(Ⅱ)求 f (x) 的最大值和最小值。 (16)(本小题共 14 分) 如图,正方形 ABCD 和四边形ACEF 所在的平面互相垂直,CE⊥AC,EF∥AC,AB= 2 , CE=EF=1. (Ⅰ)求证:AF∥平面 BDE; (Ⅱ)求证:CF⊥平面 BDE; (Ⅲ)求二面角 A-BE-D 的大小。 [来源:学+科+网 Z+X+X+K] 第 4 页 共 23 页 (17)(本小题共 13 分) 4某同学参加 3 门课程的考试.假设该同学第一门课程取得优秀成绩的概率为 ,第二、 5第三门课程取得优秀成绩的概率分别为 p , q ( p > q ),且不同课程是否取得优秀成绩相互 独立.记 ξ 为该生取得优秀成绩的课程数,其分布列为 ξ01[来源:学科网 ZXXK] 23624 pad[来源:学科网] 125 125 (Ⅰ)求该生至少有 1 门课程取得优秀成绩的概率; (Ⅱ)求 的值; (Ⅲ)求数学期望 ξ。 p, q E第 5 页 共 23 页 (18)(本小题共 13 分) k已知函数 f (x)  ln(1 x)  x  x2 (k  0) 2(Ⅰ)当 (Ⅱ)求 kf=2 时,求曲线 y = f ( x )在点(1, f (1))处的切线方程; (x)的单调区间。 第 6 页 共 23 页 (19)(本小题共 14 分) 在平面直角坐标系 xOy 中,点 B 与点 A(-1,1)关于原点 O 对称,P 是动点,且直线 AP 1与 BP 的斜率之积等于 .3(Ⅰ)求动点 P 的轨迹方程; (Ⅱ)设直线 AP 和 BP 分别与直线 x =3 交于点 M,N,问:是否存在点 P 使得△PAB 与△PMN 的面积相等?若存在,求出点 P 的坐标;若不存在,说明理由。 第 7 页 共 23 页 (20)(本小题共 13 分) 已知集合 Sn {X | X  (x1, x2 ,… ,xn ), x1 {0,1},i 1,2,… ,n}(n  2) 对于 A  (a1,a2 ,… an ,) ,B  (b ,b2 ,… bn ,)Sn ,定义 A 与 B 的差为 1A B  (| a1 b |,| a2 b2 |,… | an b |); 1nnA 与 B 之间的距离为 d(A, B)   a1  b 1i1 (Ⅰ)证明:A, B,C Sn ,有A BSn ,且 d(AC, B C)  d(A, B) ;(Ⅱ)证明:A, B,C Sn ,d(A, B),d(A,C),d(B,C) 三个数中至少有一个是偶数 (Ⅲ) 设 P  Sn ,P 中有 m(m≥2)个元素,记 P 中所有两元素间距离的平均值为 d(P) .mn 证明: d(P)  2(m 1) 第 8 页 共 23 页 2010 年北京市高考数学试卷(理科) 参考答案与试题解析  一、选择题(共 8 小题,每小题 5 分,满分 40 分) 1.(5 分)(2010•北京)(北京卷理 1)集合 P={x∈Z|0≤x<3},M={x∈Z|x2<9},则 P∩M= (  ) A.{1,2} B.{0,1,2} 【考点】交集及其运算.菁优网版权所有 【专题】集合. C.{x|0≤x<3} D.{x|0≤x≤3} 【分析】由题意集合 P={x∈Z|0≤x<3},M={x∈Z|x2<9},分别解出集合 P,M,从而求出 P∩M .【解答】解:∵集合 P={x∈Z|0≤x<3}, ∴P={0,1,2}, ∵M={x∈Z|x2<9}, ∴M={﹣2,﹣1,0,1,2}, ∴P∩M={0,1,2}, 故选 B. 【点评】此题考查简单的集合的运算,集合在高考的考查是以基础题为主,题目比较容易, 复习中我们应从基础出发.  2.(5 分)(2010•北京)在等比数列{an}中,a1=1,公比 q≠1.若 am=a1a2a3a4a5,则 m=(   )A.9 B.10 C.11 D.12 【考点】等比数列的性质.菁优网版权所有 【专题】等差数列与等比数列. 【分析】把 a1 和 q 代入 am=a1a2a3a4a5,求得 am=a1q10,根据等比数列通项公式可得 m. 【解答】解:am=a1a2a3a4a5=a1qq2q3q4=a1q10,因此有 m=11 【点评】本题主要考查了等比数列的性质.属基础题.  3.(5 分)(2010•北京)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左) 视图分别如图所,则该几何体的俯视图为(  ) 第 9 页 共 23 页 A. B. C. D. 【考点】简单空间图形的三视图.菁优网版权所有 【专题】立体几何. 【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的 正确图形. 【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体 在原长方体的左侧, 由以上各视图的描述可知其俯视图符合 C 选项. 故选:C. 【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相 等”的含义.  4.(5 分)(2010•北京)8 名学生和 2 位老师站成一排合影,2 位老师不相邻的排法种数 为(  ) 28828282A.A8 A9 B.A8 C9 C.A8 A7 D.A8 C7 【考点】排列、组合的实际应用.菁优网版权所有 【专题】排列组合. 【分析】本题要求两个教师不相邻,用插空法来解决问题,将所有学生先排列,有 A88 种排 法,再将两位老师插入 9 个空中,共有 A92 种排法,根据分步计数原理得到结果. 【解答】解:用插空法解决的排列组合问题, 将所有学生先排列,有 A88 种排法, 然后将两位老师插入 9 个空中, 共有 A92 种排法, 8∴一共有 A8 A92 种排法. 故选 A. 【点评】本题考查排列组合的实际应用,考查分步计数原理,是一个典型的排列组合问题, 对于不相邻的问题,一般采用插空法来解.  5.(5 分)(2010•北京)极坐标方程(ρ﹣1)(θ﹣π)=0(ρ≥0)表示的图形是(  ) A.两个圆 B.两条直线 C.一个圆和一条射线 D.一条直线和一条射线 【考点】简单曲线的极坐标方程.菁优网版权所有 【专题】坐标系和参数方程. 【分析】由题中条件:“(ρ﹣1)(θ﹣π)=0”得到两个因式分别等于零,结合极坐标的意义 即可得到. 【解答】解:方程(ρ﹣1)(θ﹣π)=0⇒ρ=1 或 θ=π, ρ=1 是半径为 1 的圆, 第 10 页 共 23 页 θ=π 是一条射线. 故选 C. 【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置, 体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化 . 6.(5 分)(2010•北京)若 , 是非零向量,“ ⊥ ”是“函数 为一次函数”的(  ) A.充分而不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【考点】必要条件、充分条件与充要条件的判断;数量积判断两个平面向量的垂直关系.菁优网版权所有 【专题】简易逻辑. 【分析】先判别必要性是否成立,根据一次函数的定义,得到 ,则 成立,再判 断充分性是否成立,由 而不是一次函数. 【解答】解: ,,不能推出函数为一次函数,因为 时,函数是常数, 如,则有 ,如果同时有 ,则函数 f(x)恒为 0,不是一次函数,因此不充分, 而如果 f(x)为一次函数,则 故答案为 B. ,因此可得 ,故该条件必要. 【点评】此题考查必要条件、充分条件与充要条件的判别,同时考查平面向量的数量积的相 关运算.  7.(5 分)(2010•北京)设不等式组 表示的平面区域为 D,若指数函数 y=ax 的图象上存在区域 D 上的点,则 a 的取值范围是(  ) A.(1,3] B.[2,3] C.(1,2] D.[3,+∞] 【考点】二元一次不等式(组)与平面区域;指数函数的图像与性质.菁优网版权所有 【专题】不等式的解法及应用. 第 11 页 共 23 页 【分析】先依据不等式组 ,结合二元一次不等式(组)与平面区域的关系 画出其表示的平面区域,再利用指数函数 y=ax 的图象特征,结合区域的角上的点即可解决 问题. 【解答】解:作出区域 D 的图象,联系指数函数 y=ax 的图象, 由得到点 C(2,9), 当图象经过区域的边界点 C(2,9)时,a 可以取到最大值 3, 而显然只要 a 大于 1,图象必然经过区域内的点. 故选:A. 【点评】这是一道略微灵活的线性规划问题,本题主要考查了用平面区域二元一次不等式组 、指数函数的图象与性质,以及简单的转化思想和数形结合的思想,属中档题.  8.(5 分)(2010•北京)如图,正方体 ABCD﹣A1B1C1D1 的棱长为 2,动点 E、F 在棱 A1B1 上,动点 P,Q 分别在棱 AD,CD 上,若 EF=1,A1E=x,DQ=y,DP=z(x,y,z 大于零) ,则四面体 PEFQ 的体积(  ) A.与 x,y,z 都有关 B.与 x 有关,与 y,z 无关 C.与 y 有关,与 x,z 无关 D.与 z 有关,与 x,y 无关 【考点】棱柱、棱锥、棱台的体积.菁优网版权所有 【专题】立体几何. 【分析】四面体 PEFQ 的体积,找出三角形△EFQ 面积是不变量,P 到平面的距离是变化的 ,从而确定选项. 第 12 页 共 23 页 【解答】解:从图中可以分析出,△EFQ 的面积永远不变,为面 A1B1CD 面积的 , 而当 P 点变化时,它到面 A1B1CD 的距离是变化的,因此会导致四面体体积的变化. 故选 D. 【点评】本题考查棱锥的体积,在变化中寻找不变量,是中档题.  二、填空题(共 6 小题,每小题 5 分,满分 30 分) 9.(5 分)(2010•北京)在复平面内,复数 对应的点的坐标为 (﹣1,1) . 【考点】复数的代数表示法及其几何意义.菁优网版权所有 【专题】数系的扩充和复数. 【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行复 数的乘法运算,得到最简形式即复数的代数形式,写出复数对应的点的坐标. 【解答】解:∵ ,∴复数在复平面上对应的点的坐标是(﹣1,1) 故答案为:(﹣1,1) 【点评】本题考查复数的代数形式的乘除运算,考查复数在复平面上对应的点的坐标,要写 点的坐标,需要把复数写成代数形式的标准形式,实部做横标,虚部做纵标,得到点的坐标 . 10.(5 分)(2010•北京)在△ABC 中,若 b=1,c= ,∠C= ,则 a= 1 . 【考点】三角形中的几何计算.菁优网版权所有 【专题】解三角形. 【分析】先根据 b,c,∠c,由正弦定理可得 sinB,进而求得 B,再根据正弦定理求得 a. 【解答】解:在△ABC 中由正弦定理得 ,∴sinB= , ∵b<c, 故 B= ,则 A= 由正弦定理得 ∴a= =1 故答案为:1 【点评】本题考查了应用正弦定理求解三角形问题.属基础题.  11.(5 分)(2010•北京)从某小学随机抽取 100 名同学,将他们身高(单位:厘米)数 据绘制成频率分布直方图(如图).由图中数据可知 a= 0.03 .若要从身高在[120,130﹚ 第 13 页 共 23 页 ,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取 18 人参加一项活动, 则从身高在[140,150]内的学生中选取的人数应为 3 . 【考点】频率分布直方图.菁优网版权所有 【专题】概率与统计. 【分析】欲求 a,可根据直方图中各个矩形的面积之和为 1,列得一元一次方程,解出 a, 欲求选取的人数,可先由直方图找出三个区域内的学生总数,及其中身高在[140,150]内的 学生人数,再根据分层抽样的特点,代入其公式求解. 【解答】解:∵直方图中各个矩形的面积之和为 1, ∴10×(0.005+0.035+a+0.02+0.01)=1, 解得 a=0.03. 由直方图可知三个区域内的学生总数为 100×10×(0.03+0.02+0.01)=60 人. 其中身高在[140,150]内的学生人数为 10 人, 所以身高在[140,150]范围内抽取的学生人数为 ×10=3 人. 故答案为:0.03,3. 【点评】本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所 以各个矩形面积之和为 1.同时也考查了分层抽样的特点,即每个层次中抽取的个体的概率 都是相等的,都等于 . 12.(5 分)(2010•北京)如图,⊙O 的弦 ED,CB 的延长线交于点 A.若 BD⊥AE,AB=4 ,BC=2,AD=3,则 DE= 5 ;CE=   . 【考点】圆內接多边形的性质与判定.菁优网版权所有 【专题】立体几何. 【分析】首先根据题中圆的切线条件再依据割线定理求得一个线段 AE 的长,再根据勾股定 理的线段的关系可求得 CE 的长度即可. 【解答】解:首先由割线定理不难知道 AB•AC=AD•AE, 于是 AE=8,DE=5,又 BD⊥AE, 故 BE 为直径,因此∠C=90°, 由勾股定理可知 CE2=AE2﹣AC2=28, 第 14 页 共 23 页 故 CE= .故填:5; .【点评】本题考查与圆有关的比例线段、平面几何的切割线定理,属容易题.  13.(5 分)(2010•北京)已知双曲线 的离心率为 2,焦点与椭圆 的焦点相同,那么双曲线的焦点坐标为 (4,0),(﹣4,0) ;渐近线方程为  y= x . 【考点】双曲线的简单性质;椭圆的简单性质.菁优网版权所有 【专题】圆锥曲线的定义、性质与方程. 【分析】先根据椭圆的方程求出焦点坐标,得到双曲线的 c 值,再由离心率求出 a 的值,最 后根据 b= 得到 b 的值,可得到渐近线的方程. 【解答】解:∵椭圆 的焦点为(4,0)(﹣4,0),故双曲线中的 c=4,且满足 =2,故 a=2, b= ,所以双曲线的渐近线方程为 y=± =± x故答案为:(4,0),(﹣4,0);y= x【点评】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识 也进行了综合性考查.  14.(5 分)(2010•北京)如图放置的边长为 1 的正方形 PABC 沿 x 轴滚动.设顶点 P(x, y)的轨迹方程是 y=f(x),则 f(x)的最小正周期为 4 ;y=f(x)在其两个相邻零点 间的图象与 x 轴所围区域的面积为 π+1 . 【考点】函数的图象与图象变化.菁优网版权所有 【专题】函数的性质及应用. 【分析】正方形 PABC 沿 x 轴滚动”包括沿 x 轴正方向和沿 x 轴负方向滚动.沿 x 轴正方向 滚动指的是先以顶点 A 为中心顺时针旋转,当顶点 B 落在 x 轴上时,再以顶点 B 为中心顺 时针旋转,如此继续.类似地,正方形 PABC 可以沿 x 轴负方向滚动. 【解答】解:从某一个顶点(比如 A)落在 x 轴上的时候开始计算,到下一次 A 点落在 x 轴上, 这个过程中四个顶点依次落在了 x 轴上,而每两个顶点间距离为正方形的边长 1,因此该函 数的周期为 4. 第 15 页 共 23 页 下面考察 P 点的运动轨迹,不妨考察正方形向右滚动, P 点从 x 轴上开始运动的时候,首先是围绕 A 点运动 个圆,该圆半径为1, 然后以 B 点为中心,滚动到 C 点落地,其间是以 BP 为半径,旋转 90°, 然后以 C 为圆心,再旋转 90°,这时候以 CP 为半径, 因此最终构成图象如下: 故其与 x 轴所围成的图形面积为 .故答案为:4,π+1 【点评】本题考查的知识点是函数图象的变化,其中根据已知画出正方形转动过程中的一个 周期内的图象,利用数形结合的思想对本题进行分析是解答本题的关键.  三、解答题(共 6 小题,满分 80 分) 15.(13 分)(2010•北京)已知函数 f(x)=2cos2x+sin2x﹣4cosx. (Ⅰ)求 的值; (Ⅱ)求 f(x)的最大值和最小值. 【考点】三角函数的最值;二倍角的余弦.菁优网版权所有 【专题】三角函数的求值. 【分析】(Ⅰ)把 x= 代入到 f(x)中,利用特殊角的三角函数值求出即可; (Ⅱ)利用同角三角函数间的基本关系把 sin2x 变为 1﹣cos2x,然后利用二倍角的余弦函数 公式把 cos2x 变为 2cos2x﹣1,得到 f(x)是关于 cosx 的二次函数,利用配方法把 f(x)变 成二次函数的顶点式,根据 cosx 的值域,利用二次函数求最值的方法求出 f(x)的最大值 和最小值即可. 【解答】解:(Ⅰ) =;(Ⅱ)f(x)=2(2cos2x﹣1)+(1﹣cos2x)﹣4cosx =3cos2x﹣4cosx﹣1 =,因为 cosx∈[﹣1,1], 所以当 cosx=﹣1 时,f(x)取最大值 6;当 时,取最小值﹣ . 第 16 页 共 23 页 【点评】考查学生灵活运用同角三角函数间的基本关系及二倍角的余弦函数公式化间求值, 此题以三角函数为平台,考查二次函数求最值的方法.  16.(14 分)(2010•北京)如图,正方形 ABCD 和四边形 ACEF 所在的平面互相垂直, CE⊥AC,EF∥AC,AB= ,CE=EF=1. (Ⅰ)求证:AF∥平面 BDE; (Ⅱ)求证:CF⊥平面 BDE; (Ⅲ)求二面角 A﹣BE﹣D 的大小. 【考点】空间中直线与平面之间的位置关系;直线与平面平行的判定;直线与平面垂直的判 定.菁优网版权所有 【专题】空间位置关系与距离. 【分析】(Ⅰ)设 AC 与 BD 交于点 G,则在平面 BDE 中,可以先证明四边形 AGEF 为平 行四边形⇒EG∥AF,就可证:AF∥平面 BDE; (Ⅱ)先以 C 为原点,建立空间直角坐标系 C﹣xyz.把对应各点坐标求出来,可以推出 •=0 和 •=0,就可以得到 CF⊥平面 BDE ,1),是平面 BDE 的一个法向量,再利用平面 ABE (Ⅲ)先利用(Ⅱ)找到 =( ,的法向量 • =0和 • =0,求出平面 ABE 的法向量 ,就可以求出二面角A﹣BE﹣D 的 大小. 【解答】解:证明:(I)设 AC 与 BD 交于点 G, 因为 EF∥AG,且 EF=1,AG= AC=1, 所以四边形 AGEF 为平行四边形.所以 AF∥EG. 因为 EG⊂平面 BDE,AF⊄平面 BDE, 所以 AF∥平面 BDE. (II)因为正方形 ABCD 和四边形 ACEF 所在的平面互相垂直,CE⊥AC, 所以 CE⊥平面 ABCD. 如图,以 C 为原点,建立空间直角坐标系 C﹣xyz. 则 C(0,0,0),A( ,,0),D( ,0,0),E(0,0,1),F( ,,1 ). 所以 =( ,,1), =(0,﹣ ,1), =(﹣ ,0,1). 所以 •=0﹣1+1=0, •=﹣1+0+1=0. 所以 CF⊥BE,CF⊥DE,所以 CF⊥平面 BDE 第 17 页 共 23 页 (III)由(II)知, =( ,,1),是平面 BDE 的一个法向量, 设平面 ABE 的法向量 =(x,y,z),则 • =0, • =0. 即所以 x=0,且 z= y.令 y=1,则 z= .所以 n=( ),从而 cos( ,)= 因为二面角 A﹣BE﹣D 为锐角,所以二面角 A﹣BE﹣D 为 .【点评】本题综合考查直线和平面垂直的判定和性质和线面平行的推导以及二面角的求法. 在证明线面平行时,其常用方法是在平面内找已知直线平行的直线.当然也可以用面面平行 来推导线面平行.  17.(13 分)(2010•北京)某同学参加 3 门课程的考试.假设该同学第一门课程取得优秀 成绩的概率为 ,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程 是否取得优秀成绩相互独立.记 ξ 为该生取得优秀成绩的课程数,其分布列为 ξ01a2d3p(Ⅰ)求该生至少有 1 门课程取得优秀成绩的概率; (Ⅱ)求数学期望 Eξ. 【考点】离散型随机变量的期望与方差;互斥事件与对立事件;相互独立事件的概率乘法公 式.菁优网版权所有 【专题】概率与统计. 【分析】(I)由题意知事件该生至少有一门课程取得优异成绩与事件“ξ=0”是对立的,要求 该生至少有一门课程取得优秀成绩的概率,需要先知道该生没有一门课程优秀,根据对立事 件的概率求出结果. (II)由题意可知,需要先求出分布列中的概率 a 和 b 的值,根据互斥事件的概率和相互独 立事件同时发生的概率,得到这两个值,求出概率之后,问题就变为求期望. 【解答】解:事件 A 表示“该生第 i 门课程取得优异成绩”,i=1,2,3. 第 18 页 共 23 页 由题意可知 (I)由于事件“该生至少有一门课程取得优异成绩”与事件“ξ=0”是对立的, ∴该生至少有一门课程取得优秀成绩的概率是 1﹣P(ξ=0)=1﹣ (II)由题意可知, P(ξ=0)= P(ξ=3)= 整理得 p= ,.∵a=P(ξ=1)= ==d=P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)= ∴Eξ=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)= 【点评】本题课程互斥事件的概率,相互独立事件同时发生的概率,离散型随机变量的分布 列和期望,是一道综合题,求离散型随机变量的分布列和期望是近年来理科高考必出的一个 问题.  18.(13 分)(2010•北京)已知函数 f(x)=ln(1+x)﹣x+ x2(k≥0). (Ⅰ)当 k=2 时,求曲线 y=f(x)在点(1,f(1))处的切线方程; (Ⅱ)求 f(x)的单调区间. 【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.菁优网版权所有 【专题】导数的概念及应用. 【分析】(I)根据导数的几何意义求出函数 f(x)在 x=1 处的导数,从而求出切线的斜率, 然后求出切点坐标,再用点斜式写出直线方程,最后化简成一般式即可; (II)先求出导函数 f’(x),讨论 k=0,0<k<1,k=1,k>1 四种情形,在函数的定义域 内解不等式 fˊ(x)>0 和 fˊ(x)<0 即可. 【解答】解:(I)当 K=2 时, 由于 为所以曲线 y=f(x)在点(1,f(1))处的切线方程 第 19 页 共 23 页 .即 3x﹣2y+2ln2﹣3=0 ﹣1+kx(x>﹣1) (II)f’(x)= 当 k=0 时, 因此在区间(﹣1,0)上,f’(x)>0;在区间(0,+∞)上,f’(x)<0; 所以 f(x)的单调递增区间为(﹣1,0),单调递减区间为(0,+∞); 当 0<k<1 时, ,得 ;因此,在区间(﹣1,0)和 上,f’(x)>0;在区间 上, f’(x)<0; 即函数 f(x)的单调递增区间为(﹣1,0)和 ,单调递减区间为(0, ); 当 k=1 时, .f(x)的递增区间为(﹣1,+∞) 当 k>1 时,由 因此,在区间 ,得 ;和(0,+∞)上,f’(x)>0,在区间 上,f’( x)<0; 即函数 f(x)的单调递增区间为 和(0,+∞),单调递减区间为 .【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及函数的单调性等基础知识 ,考查运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想、分类讨论的数 学思想,属于基础题.  19.(14 分)(2010•北京)在平面直角坐标系 xOy 中,点 B 与点 A(﹣1,1)关于原点 O 对称,P 是动点,且直线 AP 与 BP 的斜率之积等于﹣ . (Ⅰ)求动点 P 的轨迹方程; (Ⅱ)设直线 AP 和 BP 分别与直线 x=3 交于点 M,N,问:是否存在点 P 使得△PAB 与△PMN 的面积相等?若存在,求出点 P 的坐标;若不存在,说明理由. 【考点】轨迹方程;三角形中的几何计算;点到直线的距离公式.菁优网版权所有 【专题】圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题. 【分析】(Ⅰ)设点 P 的坐标为(x,y),先分别求出直线 AP 与 BP 的斜率,再利用直线 AP 与 BP 的斜率之间的关系即可得到关系式,化简后即为动点 P 的轨迹方程; 第 20 页 共 23 页 (Ⅱ)对于存在性问题可先假设存在,由面积公式得: .根据角相等消去三角函数得比例式, 最后得到关于点 P 的纵坐标的方程,解之即得. 【解答】解:(Ⅰ)因为点 B 与 A(﹣1,1)关于原点 O 对称,所以点 B 得坐标为(1,﹣1 ). 设点 P 的坐标为(x,y) 化简得 x2+3y2=4(x≠±1). 故动点 P 轨迹方程为 x2+3y2=4(x≠±1) (Ⅱ)解:若存在点 P 使得△PAB 与△PMN 的面积相等,设点 P 的坐标为(x0,y0) 则.因为 sin∠APB=sin∠MPN, 所以 所以 =2即(3﹣x0)2=|x0 ﹣1|,解得 22因为 x0 +3y0 =4,所以 故存在点 P 使得△PAB 与△PMN 的面积相等,此时点 P 的坐标为 .【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.  20.(13 分)(2010•北京)已知集合 Sn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2, …,n}(n≥2)对于 A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定义 A 与 B 的差 为 A﹣B=(|a1﹣b1|,|a2﹣b2|,…|an﹣bn|); A 与 B 之间的距离为 (Ⅰ)证明:∀A,B,C∈Sn,有 A﹣B∈Sn,且 d(A﹣C,B﹣C)=d(A,B); (Ⅱ)证明:∀A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三个数中至少有一个是 偶数 (Ⅲ)设 P⊆Sn,P 中有 m(m≥2)个元素,记 P 中所有两元素间距离的平均值为 证明: .≤.【考点】进行简单的合情推理.菁优网版权所有 【专题】压轴题;推理和证明. 【分析】(Ⅰ)因为每个数位上都是 0 或者 1,取差的绝对值仍然是 0 或者 1,符合 Sn 的要 求. 第 21 页 共 23 页 然后是减去 C 的数位,不管减去的是 0 还是 1,每一个 a 和每一个 b 都是同时减去的, 因此不影响他们原先的差. (Ⅱ)先比较 A 和 B 有几个不同(因为距离就是不同的有几个),然后比较 A 和 C 有几个 不同, 这两者重复的(就是某一位上 A 和 B 不同,A 和 C 不同,那么这一位上 B 和 C 就相同)去 掉两次 (因为在前两次比较中各计算了一次),剩下的就是 B 和 C 的不同数目, 很容易得到这样的关系式:h=k+l﹣2i,从而三者不可能同为奇数. 2(Ⅲ)首先理解 P 中会出现 Cm2 个距离,所以平均距离就是距离总和再除以 Cm 而距离的总和仍然可以分解到每个数位上,第一位一共产生了多少个不同, 第二位一共产生了多少个不同,如此下去,直到第 n 位.然后思考, ,第一位一共 m 个数,只有 0 和 1 会产生一个单位距离,因此只要分开 0 和 1 的数目即可, 等算出来 ,一切就水到渠成了. 此外,这个问题需要注意一下数学语言的书写规范. 【解答】解:(1)设 A=(a1,a2,…,an),B=(b1,b2,…,bn),C=(c1,c2,…,cn )∈Sn 因 ai,bi∈0,1,故|ai﹣bi|∈0,1,(i=1,2,…,n)a1b1∈0,1, 即 A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|an﹣bn|)∈Sn 又 ai,bi,ci∈(0,1),i=1,2,…,n 当 ci=0 时,有||ai﹣ci|﹣|bi﹣ci||=|ai﹣bi|; 当 ci=1 时,有||ai﹣ci|﹣|bi﹣ci||=|(1﹣ai)﹣(1﹣bi)=|ai﹣bi| 故(2)设 A=(a1,a2,…,an),B=(b1,b2,…,bn),C=(c1,c2,…,cn)∈Sn 记 d(A,B)=k,d(A,C)=l,d(B,C)=h 记 O=(0,0,…,0)∈Sn,由第一问可知: d(A,B)=d(A﹣A,B﹣A),d=(O,B﹣A)=k d(A,C)=d(A﹣A,C﹣A)=d(O,C﹣A)=l d(B,C)=d(B﹣A,C﹣A)=h 即|bi﹣ai|中 1 的个数为 k,|ci﹣ai|中 1 的个数为 l,(i=1,2,…,n) 设 t 是使|bi﹣ai|=|ci﹣ai|=1 成立的 i 的个数,则有 h=k+l﹣2t, 由此可知,k,l,h 不可能全为奇数,即 d(A,B),d(A,C),d(B,C)三个数中至 少有一个是偶数. (3)显然 P 中会产生 Cm2 个距离,也就是说 ,其中 表示 P 中每两个元素距离的总和. 分别考察第 i 个位置,不妨设 P 中第 i 个位置一共出现了 ti 个 1,那么自然有 m﹣ti 个 0,因 此在这个位置上所产生的距离总和为 ,(i=1,2,…,n), 那么 n 个位置的总和 第 22 页 共 23 页 即【点评】本题是综合考查集合、数列与推理综合的应用,这道题目的难点主要出现在读题上 ,需要仔细分析,以找出解题的突破点.题目所给的条件其实包含两个定义,第一个是关于 Sn 的,其实 Sn 中的元素就是一个 n 维的坐标,其中每个坐标值都是 0 或者 1,也可以这样 理解,就是一个 n 位数字的数组,每个数字都只能是 0 和 1,第二个定义叫距离,距离定义 在两者之间,如果直观理解就是看两个数组有多少位不同,因为只有 0 和 1 才能产生一个单 位的距离,因此这个大题最核心的就是处理数组上的每一位数,然后将处理的结果综合起来 ,就能看到整体的性质了.  第 23 页 共 23 页

分享到 :
相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注