湖南省常德市 2021 年中考数学试卷 一、选择题 1. A. 4 的倒数是( )14B. C. D. 4 21A【答案】 【解析】 【分析】根据互为倒数的两个数的乘积是 1,求出 4 的倒数是多少即可. 【详解】解:4 的倒数是: 11÷4= .4故选:A. 【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个 数的乘积是 1. a b 2. 若,下列不等式不一定成立的是( )acbca c b c D. A. B. C. a 5 b 5 5a 5b C【答案】 【解析】 【分析】根据不等式的性质逐项进行判断即可得到答案. a b 【详解】解:A.在不等式 a b 两边同时减去 5,不等式仍然成立,即 ,故选项 A 不符合题意; a 5 b 5 B. 在不等式 两边同时除以-5,不等号方向改变,即 ,故选项 B 不符合题意; 5a 5b acbcC.当 c≤0 时,不等得到 ,故选项 C 符合题意; a b a c b c 两边同时加上 c,不等式仍然成立,即 D. 在不等式 故选:C. ,故选项 D 不符合题意; 【点睛】此题主要考查了不等式的性质运用的,熟练掌握不等式的性质是解答此题的关键. 3. 一个多边形的内角和是 1800°,则这个多边形是( )边形. A. 9 B. 10 C. 11 D. 12 D【答案】 【解析】 【分析】根据 n 边形的内角和是(n﹣2)×180 ,根据多边形的内角和为 1800 ,就得到一个关于 n 的 方程,从而求出边数. 【详解】根据题意得:(n﹣2)×180 解得:n=12. =1800 , 故选:D. 【点睛】此题主要考查多边形的内角和,解题的关键是熟知 n 边形的内角和是(n﹣2)×180 .4. 下列计算正确的是( )a3 a2 2A. B. C. a3 a5 D. a3 a2 a6 a2 a2 a4 a(a 0) D【答案】 【解析】 【分析】根据同底数幂的乘除法、幂的乘方及合并同类项可直接进行排除选项. 32【详解】A、 5 原计算错误,该选项不符合题意; a a a 22B、 C、 2 原计算错误,该选项不符合题意; a a 2a 2a3 a6 原计算错误,该选项不符合题意; a3 a2 D、 正确,该选项符合题意; a(a 0) 故选:D. 【点睛】本题主要考查了同底数幂的乘除法、幂的乘方及合并同类项,熟练掌握同底数幂的乘除法、幂的 乘方及合并同类项是解题的关键. 5. 舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情 况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从 当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统 计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是( )A. ②→③→①→④ C. ①→②→④→③ B. ③→④→①→② D. ②→④→③→① D【答案】 【解析】 【分析】根据数据的收集、整理、制作拆线统计图及根据统计图分析结果的步骤可得答案. 【详解】解:将用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况的步骤如下: ②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录; ④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表. ③按统计表的数据绘制折线统计图; ①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势; 所以,正确统计步骤的顺序是②→④→③→① 故选:D. 【点睛】本题考查拆线统计图、频数分布表,解答本题的关键是明确制作频数分布表和拆线统计图的制作 步骤 5 1 25 1 21 6. 计算: ()5 1 2A. 0 B. 1 C. 2 D. C【答案】 【解析】 【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案. 5 1 25 1 21 【详解】解: 5 1 51 ==2251 2=2. 故选:C. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键. 7. 如图,已知 F、E 分别是正方形 的边 与BC 的中点, 与AE DF 交于 P.则下列结论成立的 ABCD AB 是( )1BE AE A. B. C. EAF AFD 90 D. PE EC PC PD 2C【答案】 【解析】 【分析】根据正方形的性质,全等三角形的判定和性质以及等腰三角形的性质逐一判断即可. 【详解】解:∵四边形 ABCD 是正方形, ∴AB=BC=CD=CA,∠ABC=∠BCD=∠CDA=∠DAB=90°, ∵已知 F、E 分别是正方形 ABCD 的边 AB 与 BC 的中点, 111∴BE= BC= AB< AE,故 A 选项错误,不符合题意; 222在△ABE 和△DAF 中, AB DA ABE DAF 90 BE FA ,∴△ABE≌△DAF(SAS), ∴∠BAE=∠ADF, ∵∠ADF+∠AFD=90°, ∴∠BAE+∠AFD =90°, ∴∠APF=90°, ∴∠EAF+∠AFD=90°,故 C 选项正确,符合题意; 连接 FC, 同理可证得△CBF≌△DAF(SAS), ∴∠BCF=∠ADF, ∴∠BCD-∠BCF=∠ADC-∠ADF,即 90°-∠BCF=90°-∠ADF, ∴∠PDC=∠FCD>∠PCD, ∴PC>PD,故 B 选项错误,不符合题意; ∵AD>PD, ∴CD>PD, ∴∠DPC>∠DCP, ∴90°-∠DPC<90°-∠DCP, ∴∠CPE<∠PCE, ∴PE> CE,故 D 选项错误,不符合题意; 故选:C. 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质等知识.此题综合性很 强,解题的关键是注意数形结合思想的应用. 22 ,那么称 m 为广义勾 8. 阅读理解:如果一个正整数 m 能表示为两个正整数 a,b 的平方和,即 m a b 股数.则下面的四个结论:①7 不是广义勾股数;②13 是广义勾股数;③两个广义勾股数的和是广义勾股 数;④两个广义勾股数的积是广义勾股数.依次正确的是( )A. ②④ 【答案】 【解析】 B. ①②④ C. ①② D. ①④ C【分析】结合题意,根据有理数乘方、有理数加法的性质计算,即可得到答案. 3 4 或【详解】∵ 7 1 6 或2 5 ∴7 不是广义勾股数,即①正确; 22∵13 4 9 2 3 ∴13 是广义勾股数,即②正确; 222215 不是广义勾股数 ∵,,5 1 2 10 1 3 ∴③错误; 2222∵,,,且 65 不是广义勾股数 65 513 5 1 2 13 2 3 ∴④错误; 故选:C. 【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数乘方、有理数加法的性质,从而完 成求解. 二、填空题 9. 求不等式 2x 3 x 的解集_________. 【答案】 【解析】 x 3 【分析】直接移项合并同类项即可得出. 【详解】解: 2x 3 x ,移项解得: 故答案是: ,.x 3 x 3 【点睛】本题考查了解一元一次不等式,解题的关键是:熟练掌握移项合并同类项等步骤. 10. 今年 5 月 11 日,国家统计局公布了第七次全国人口普查的结果,我国现有人口 141178 万人.用科学计 数法表示此数为___________人. 9【答案】 1.4117810 【解析】 【分析】把 万写成 ,然后再按科学计数法表示出来;“万”代表 4个 0. 141178 1411780000 9【详解】 万.141178 1411780000=1.4117810 9故答案为: .1.4117810 【点睛】本题考查了科学计数法,根据科学记数法的表示形式准确的表示出原数是解题关键.科学记数法 的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原来的数,变成 a 时,小 数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10 时,n 是正数;当原数的绝对 值<1 时,n 是负数. 11. 在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于 90 分为优秀,则甲、乙两班中优秀人数更多的是__________班. 人数平均 数中位 数方差 19.3 5.8 甲班45 45 82 87 91 89 乙班【答案】甲. 【解析】 的【分析】班级人数相同,都为 45 人,中位数为班级分数排序以后 第23 位同学的分数,甲班的 91 分高于 乙班 89 分,则得出答案. 【详解】解:甲、乙两个班参赛人数都为 45 人,由甲、乙两班成绩的中位数可知,甲班的优生人数大于等 于 23 人,乙班的小于等于 22 人,则甲班的优生人数较多, 故答案为:甲. 【点睛】本题主要考查数据的分析,根据平均分、中位数、方差的特点进行分析,本题的解题关键在于掌 握中位数的特点. 11x 2 12. 分式方程 的解为__________. xx 1 x(x 1) 【答案】 x 3 【解析】 x【分析】直接利用通分,移项、去分母、求出 后,再检验即可. 11x 2 【详解】解: xx 1 x(x 1) 2x 1 x(x 1) x(x 1) x 2 通分得: ,x 3 x x1 0 移项得: ,,x 3 0 解得: x 3 ,x(x 1) 6 0 经检验, x 3时, ,x 3是分式方程的解, 故答案是: x 3 .【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错 点,容易忽略对根进行检验. 13. 如图,四边形 ABCD 是⊙O 的内接四边形,若∠BOD=80°,则∠BCD 的度数是_____. 140° 【答案】 【解析】 .∵∠BOD=80° ∴∠A=40° ,∵ABCD ⊙O , 四边形是 的内接四边形, 【详解】试题分析: ∴∠BCD=180°-40°=140° 140° .,故答案为 考点:圆内接四边形的性质;圆周角定理 CAB CD 3, BD 5 ,则 BE 的长 14. 如图.在ABC 中, C 90 ,平分 ,DE AB 于 E,若 AD ________ 为.【答案】 【解析】 4【分析】证明三角形全等,再利用勾股定理即可求出. CAB 【详解】解:由题意: ,平分 ,DE AB 于,AD E,CAD EAD AED 90 又为公共边, AD ACD≌ AED( AAS ) ,,CD DE 3 在中, ,由勾股定理得: RtDEB BD 5 2222,BE BD DE 5 3 4 故答案是: .4【点睛】本题考查了三角形全等及勾股定理,解题的关键是:通过全等找到边之间的关系,再利用勾股定 理进行计算可得. 1115. 刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过 50 个,其中 为红珠, 为绿珠,有8 个黑 64珠.问刘凯的蓝珠最多有_________个. 【答案】21 【解析】 【分析】设弹珠的总数为 x 个, 蓝珠有 y 个,根据总数不超过 50 个列出不等式求解即可. 【详解】解:设弹珠的总数为 x 个, 蓝珠有 y 个,根据题意得, 161x x 8 y x① 4,x 50② 96 12y x 由①得, ,796 12y 50 结合②得, 71y 21 解得, 6所以,刘凯的蓝珠最多有 21 个. 故答案为:21. 【点睛】此题主要考查了一元一次不等式的应用,能够找出不等关系是解答此题的关键. 16. 如图中的三个图形都是边长为 1 的小正方形组成的网格,其中第一个图形有 个正方形,所有线段的 11 和为 4,第二个图形有 2 2 个小正方形,所有线段的和为 12,第三个图形有33 个小正方形,所有线段的 和为 24,按此规律,则第 n 个网格所有线段的和为____________.(用含 n 的代数式表示) 【答案】2n2+2n 【解析】 【分析】本题要通过第 1、2、3 和 4 个图案找出普遍规律,进而得出第 n 个图案的规律为 Sn=4n+2n×(n-1), 得出结论即可. 【详解】解:观察图形可知: S 41 221, 第 1 个图案由 1 个小正方形组成,共用的木条根数 第 2 个图案由 4 个小正方形组成,共用的木条根数 第 3 个图案由 9 个小正方形组成,共用的木条根数 第 4 个图案由 16 个小正方形组成,共用的木条根数 1S 62 232, 2S 83 243, 3S 104 254, 4…由此发现规律是: S 2 n 1 n 2n2 2n, 2第 n 个图案由 n 个小正方形组成,共用的木条根数 n故答案为:2n2+2n. 【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键. 三、解答题 01 17. 计算: .2021 3 9 2 sin 45 【答案】 . 1【解析】 【分析】直接利用零次幂的运算法则,负次幂的运算法则、二次根式及特殊角的三角函数值进行计算即 可. 01 【详解】解: 2021 3 9 2 sin 45 3221 2 3111 1 故答案是: . 1【点睛】本题考查了零次幂的运算法则,负次幂的运算法则、二次根式及特殊角的三角函数值,解题的关 键是:熟练掌握相关运算法则. 218. 解方程: x x 2 0 x 2 x 1 ,【答案】 【解析】 12【详解】分析:利用十字相乘法对等式的左边进行因式分解,然后解方程. 详解:由原方程,得: ﹣(x+1)(x 2)=0, ﹣解得:x1=2,x2= 1. 的点睛:本题考查了解一元二次方程.因式分解法就是先把方程 右边化为0,再把左边通过因式分解 化为两个一次因式的积的形式,那么这两个因式的值就都有可能为 0,这就能得到两个一元一次方程 的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转 化思想). a5a 9 a 3 a 1 19. 化简: a 1 a2 1 a 3 a 1 【答案】 【解析】 【分析】直接将括号里面的分式,通分运算进而结合分式的混合运算法则,计算得出答案. a5a 9 a 3 a 1 【详解】 a 1 a2 1 a2 a 5a 9 a 1 =( +) a2 1 a2 1 a 3 a2 6a 9 a 1 (a 1)(a 1) a 3 =(a 3)2 (a 1)(a 1) a 3 a 1 =a 3 a 1 a 3 故答案为: .a 1 【点睛】本题考查了分式的化简,分式的通分,因式分解,平方差公式,完全平方公式,分式的混合运算, 熟练运用公式和分式的计算法则是解题关键. AB y n, 3 20. 如图,在 RtAOB 中, AO BO .轴,O 为坐标原点,A 的坐标为 ,反比例函数 k1 k2 y y1 的图象的一支过 A 点,反比例函数 的图象的一支过 B 点,过 A 作 轴于 H,若 AH x 2xx3的面积为 .△AOH 2(1)求 n 的值; (2)求反比例函数 2 的解析式. y3y 【答案】(1)1;(2) 2x【解析】 【分析】(1)根据三角形面积公式求解即可; (2)证明 ,求出BE 的长即可得出结论. AOE ABO n, 3 【详解】解:(1)∵A ,且 轴AH x ∴AH= ,OH=n 的面积为 333又∴.△AOH 212123,即 AHOH 3n 22解得, n 1 ;(2)由(1)得,AH= ,OH=1 3∴AO=2 如图, AB y ∵∴AO BO ,轴, ,四边形 AHOE 是矩形, AEO AOB 90 ∴AE=OH=1 又BAO OAE ∴AOE ABO AO AE 21∴,即: AB AO BE 1 2解得,BE=3 ∴B(-3,1) k2 xy ∵B 在反比例函数 的图象上, 2k 31 3 ∴23y ∴.2x【点睛】此题主要考查了相似三角形的判定与性质以及求反比例函数解析式,求出 B(-3,1)是解答此题的关 键. 21. 某汽车贸易公司销售 A、B 两种型号的新能源汽车,A 型车进货价格为每台 12 万元,B 型车进货价格为 每台 15 万元,该公司销售 2 台 A 型车和 5 台 B 型车,可获利 3.1 万元,销售 1 台 A 型车和 2 台 B 型车,可 获利 1.3 万元. (1)求销售一台 A 型、一台 B 型新能源汽车的利润各是多少万元? (2)该公司准备用不超过 300 万元资金,采购 A、B 两种新能源汽车共 22 台,问最少需要采购 A 型新能源 汽车多少台? 【答案】(1)销售每台 A 型车的利润为 0.3 万元,每台 B 型车的利润为 0.5 万元;(2)最少需要采购 A 型新 能源汽车 台. 10 【解析】 【分析】(1)设每台 A 型车的利润为 x 万元,每台 B 型车的利润为 y 万元,根据题意中的数量关系列出二 元一次方程组,解方程组即可; (2)先求出每台 A 型车和每台 B 型车的采购价,根据“用不超过 300 万元资金,采购 A、B 两种新能源汽 车共 22 台”列出不等式求解即可. 【详解】解:(1)设每台 A 型车的利润为 x 万元,每台 B 型车的利润为 y 万元,根据题意得, 2x 5y 3.1 x 2y 1.3 x 0.3 y 0.5 解得, 答:销售每台 A 型车的利润为 0.3 万元,每台 B 型车的利润为 0.5 万元; (2)因为每台 A 型车的采购价为:12 万元,每台 B 型车的采购价为:15 万元, 设最少需要采购 A 型新能源汽车 m 台,则需要采购 B 型新能源汽车(22-m)台,根据题意得, 12m 15(22 m) 300 3m 30, m 10 解得, ∵m 是整数, ∴m 的最小整数值为 ,10 即,最少需要采购 A 型新能源汽车 台. 10 【点睛】本题主要考查了一元一次不等式的应用和二元一次方程组的应用,解答此题的关键是找出题中的 数量关系. 22. 今年是建党 100 周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪 式.仪式结束后,站在国旗正前方的小明在 A 处测得国旗 D 处的仰角为 ,站在同一队列B 处的小刚测 45 CG 得国旗 C 处的仰角为 ,已知小明目高 米,距旗杆 的距离为 15.8 米,小刚目高 米, 23 AE 1.4 BF 1.8 距小明 24.2 米,求国旗的宽度 是多少米?(最后结果保留一位小数)(参考数据: CD sin23 0.3907,cos23 0.9205,tan23 0.4245 )【答案】国旗的宽度 【解析】 是 1.6 米. CD 【分析】首先分析图形,根据题意构造直角三角形.解直角三角形 DME 得 DM 的长,即可求出 DG,再解 三角三角形 CNF 得 CN 的长,即可求出 CG,利用 CG-DG 即可求解. 【详解】解:由题意得,四边形 GAEM、GBFN 是矩形, ∴ME=GA=15.8(米),FN=GB=GA+BA=15.8+24.2=40(米),MG=AE=1.4(米),NG=BF=1.8(米), DME 90,DEF 45 在 Rt△DME 中, ∴EDM 45 ∴(米), DM ME 15.8 ∴(米); DG DM MG 15.81.4 17.2 CNF 90,CFN 23 在 Rt△CNF 中, CN tan 23 ∴,即CN FNtan 23 400.4245 17.0 (米), FN ∴(米), CG CN NG 17.0 1.8 18.8 ∴(米) CD CG DG 18.817.2 1.6 答:国旗的宽度 是 1.6 米. CD 【点睛】此题主要考查了解直角三角形-仰角俯角问题,本题要求学生借助仰角关系构造直角三角形,并结 合图形利用三角函数解直角三角形. 23. 我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗 接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A 类—— 接种了只需要注射一针的疫苗:B 类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C 类 ——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D 类——还没有接种,图 1 与图 2 是根据 此次调查得到的统计图(不完整). 请根据统计图回答下列问题. (1)此次抽样调查的人数是多少人? 的(2)接种 B 类疫苗 人数的百分比是多少?接种C 类疫苗的人数是多少人? (3)请估计该小区所居住的 18000 名居民中有多少人进行了新冠疫苗接种. (4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集 2 名志愿宣传 者,现有 3 男 2 女共 5 名居民报名,要从这 5 人中随机挑选 2 人,求恰好抽到一男和一女的概率是多少. 3P 【答案】(1)200(人);(2)40%,30 人;(3) 人;(4) .11700 5【解析】 【分析】(1)根据 A 类型人数除以所占比例得到总人数; (2)根据 B 类型人数和总人数得到百分比,根据 C 类型的百分比和总人数求得人数; (3)估计人数可以用样本中接种了新冠疫苗的百分比乘以总人数得到估算值; (4)利用列表法列出所有可能的结果数,再用概率公式求得一男一女的概率. 20 200 【详解】(1)A 类型人数为 20 人,占样本的 10%,所以此次抽样调查的人数是: (人); 10% 80 100%=40% (2)B 类型人数为 80 人,所以 B 类疫苗的人数的百分比是: ,200 由图可知 C 类型人数的百分比为 15%,所以接种 C 类疫苗的人数是: 20015% 30 (人). (3)接种了新冠疫苗的为 A,B,C 类的百分比分别为 ,10%,40%,15% 1800(10% 40% 15%) 180065%=11700 人, 所以小区所居住的 18000 名居民中接种了新冠疫苗的有: (4)如图: 人. 11700 男 1 男 2 男 3 女 1 女 2 男 1 男 2 男 3 女 1 女 2 男 1 男 2 男 1 男 3 男 1 女 1 男 1 女 2 男 2 女 2 男 3 女 2 女 1 女 2 男 2 男 1 男 3 男 1 女 1 男 1 女 2 男 1 男 2 男 3 男 2 女 1 男 3 男 2 女 1 男 2 女 2 男 2 男 3 女 1 女 1 男 3 女 2 男 3 女 2 女 1 从表中可以看出,共有 20 种等情况数,符合题意的选中一男和一女的情形共 12 种, 12 3 =P(一男一女)= .20 5 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,用列表法或画树状图法求概率;列表法或画 树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.能对图表信息进 行具体分析和熟练掌握概率公式是解题关键比. 24. 如图,在 中, ,以 的中点 O 为圆心, 为直径的圆交 于 D,E 是 BC AC RtABC ABC 90 AB AB 的中点, 交的延长线于 F. DE BA (1)求证: 是圆 O 的切线; FD (2)若 BC 4 ,FB 8,求 的长. AB 【答案】(1)见解析;(2) 17 1 【解析】 【分析】(1)连接 OD,利用等腰三角形性质,直角三角形证明 即可; OD FE (2)设 OD=x,求证 ,列比例求解即可. ODF∽EBF 【详解】解:证明:连接 OD,如图: ∵AB 为直径, ∴,ADB BDC 90 ∵点 E 是 BC 的中点, ∴ED=EB, ∴∵∴,EDB EBD ,EBD ABD 90,DAB ABD 90 ,DAB DBE BDE ∵OA=OD, ∴ODA DAB DBE BDE ∵∴∴∴,CDE ADF ,ODA ODB 90 FDO 90 OD FD ,是圆 O 的切线. FD (2)∵E 是 BC 中点,BC=4, ∴BE=2, 2222∴,FE BE FB 2 8 2 17 在∴和△EBF 中, ,,ODF EBF 90 △ODF F F ,ODF∽EBF ∴设 OD 为 x, OD OF x8 x 则,EB FE 22 17 17 1 2解得: ,x 则.AB 2x 17 1 【点睛】本题主要考查圆切线的判定、等腰三角形的性质、直角三角形斜边上中线的性质以及相似三角形 的判定与性质,利用角的等量转化是解决本题的关键. xOy 25. 如图,在平面直角坐标系 中,平行四边形 的边与 y 轴交于 E 点,F 是 的中点,B、 AD ABCD AB 2,0 , 8,0 , 13,10 C、D 的坐标分别为 .(1)求过 B、E、C 三点的抛物线的解析式; (2)试判断抛物线的顶点是否在直线 上; EF EQ (3)设过 F 与 平行的直线交 y 轴于 Q,M 是线段 之间的动点,射线 与抛物线交于另一点 P, BM AB △PBQ 当的面积最大时,求 P 的坐标. 13y x2 x 4 【答案】(1 ) ;(2 )顶点是在直线 上,理由见解析;(3 )P 点坐标为(9 , EF 4211 ). 4【解析】 【分析】(1)先求出 A 点坐标,再求出直线 AB 的解析式,进而求得 E 的坐标,然后用待定系数法解答即 可; (2)先求出点 F 的坐标,再求出直线 EF 的解析式,然后根据抛物线的解析式确定顶点坐标,然后进行判 定即可; 1-p+2 p 8 (3)设 P 点坐标为(p, ),求出直线 BP 的解析式,进而求得 M 的坐标;再求 FQ 的解 +6,最后根据 S△PBQ= S△MBQ+ S△PMQ 列出关于 p 的二次函数并根 41p 8 析式,确定 Q 的坐标,可得|MQ|= 2据二次函数的性质求最值即可. 2,0 , 8,0 , 13,10 【详解】解:(1)∵平行四边形 ,B、C、D 的坐标分别为 ABCD ∴A(3,10), 设直线 AB 的解析式为 y=kx+b, 10 3k b k 2 b 4 则,解得 ,0 2k b ∴直线 AB 的解析式为 y=2x+4, 当 x=0 时,y=4,则 E 的坐标为(0,4), 设抛物线的解析式为:y=ax2+bx+c, 14a 20 a 2 2 b c 30 82 a 8b c 4 c b ,解得 ,2c 4 13y x2 x 4 ∴过 B、E、C 三点的抛物线的解析式为 ;42(2)顶点是在直线 上,理由如下: EF ∵F 是 的中点, AD ∴F(8,10), 设直线 EF 的解析式为 y=mx+n, 344 n m 则,解得 ,10 8m n n 4 3∴直线 EF 的解析式为 y= x+4, 413y x2 x 4 ∵,4225 4∴抛物线的顶点坐标为(3, ), 25 434∵=×3+4, ∴抛物线的顶点是否在直线 上; EF 13114y x2 x 4=- x+2x 8 -p+2 p 8 (3)∵ ,则设 P 点坐标为(p, ),直线 BP 的解析 424式为 y=dx+e, 10 2d e d p 8 41则,解得 , 1 -p+2 p 8 pd e e p 8 4 21412p 8 p 8 ∴直线 EF 的解析式为 y= x+ ,112p 8 p 8 当 x=0 时,y= ∵AB//FQ , ,则 M 点坐标为(0, ), 2∴设 FQ 的解析式为 y=2x+f,则 10=2×8+f,解得 f=-6, ∴FQ 的解析式为 y=2x-6 , ∴Q 的坐标为(0,-6), 1p 8 ∴|MQ|= +6, 2∴S△PBQ= S△MBQ+ S△PMQ 121QM OB QM PN =212QM OB PN ===1 1 p 8 6 2 p 2 2 19 p2 p 8 42△PBQ ∴当 p=9 时, 的面积最大时, 11 ∴P 点坐标为(9, ). 4【点睛】本题主要考查了运用待定系数法求函数解析式、二次函数求最值等知识点,灵活求得所需的函数 解析式成为解答本题的关键. 26. 如图,在ABC 中, AB AC ,N 是 BC 边上的一点,D 为 的中点,过点 A 作 BC 的平行线交 AN CD 的延长线于 T,且 AT BN ,连接 .BT (1)求证: BN CN ;(2)在如图中 上取一点O,使 ,作 N 关于边 的对称点 M,连接 、MO 、、AN AO OC AC OC MT OT 、得如图. CM ①求证:TOM∽AOC ;1PD / /CM , PD CM ②设 与相交于点 P,求证: .AC TM 2【答案】(1)见解析;(2)①见解析,②见解析. 【解析】 【分析】(1)先用 AT / /BN ,且 AT BN 证明出四边形 ATBN 是平行四边形,得到△TAD≌△CND,用 对应边相等与等量代换,从而得出结论. (2)①连接 AM、MN,利用矩形的性质与等腰三角形的性质,证明出△OCM 是直角三角形,证明出 Rt△OAT≌Rt△OCM,得到对应角相等,则得到答案; ②连接 OP,由①中TOM∽AOC ,得到∠OTM=∠OAP,点 O、T、A、P 共圆,由直径所对的圆周角为 直角,证明出∠OPT=90︒,再根据等腰三角形的三线合一性得出结论. 【详解】证明:(1)∵ AT / /BC ,且 AT BN ∴AT / /BN ,且 AT BN ,∴四边形 ATBN 是平行四边形, ∴,AN / /TB ∴∠DTA=∠DCN, ∵∠ADT=∠NDC, ∵点 D 为 AN 的中点, ∴AD=ND, ∴△TAD≌△CND(AAS) ∴TA=CN, ∵AT BN ,∴BN=CN, (2)①如图所示,连接 AM、MN, ∵点 N 关于边 的对称点为 M, AC ∴△ANC≌△AMC, ∴∠ACN=∠ACM, ∵AB=AC,点 N 为 AC 的中点, ∴平行四边形 ATBN 是矩形, ∴∠TAB=∠ABN=∠ACN=∠ACM,∠BAN=∠MAC=∠CAN,AT=BN=NC=MC, ∵OA=OC, ∴∠CAN=∠ACO, ∴∠TAB+∠BAN=∠ACM+∠ACO=90︒, ∴∠OAT=∠OCM=90︒, 在 Rt△OAT 和 Rt△OCM 中, ∵AT=CM,∠OAT=∠OCM ,OA=OC, ∴Rt△OAT≌Rt△OCM(SAS), ∴∠AOT=∠COM,OT=OM, ∴∠AOT+∠AOM=∠COM+∠AOM, ∴∠TOM=∠AOC ∵OA=OC,OT=OM, OT OM ∵∴,=OA OC TOM∽AOC ;②如图所示,连接 OP, ∵TOM∽AOC ,∴∠OTM=∠OAP, ∴点 O、T、A、P 共圆, ∵∠OAT=90︒, ∴OT 为圆的直径, ∴∠OPT=90︒, ∵OT=OM, ∴点 P 为 TM 的中点, ∵由(1)得△TAD≌△CND, ∴TD=CD, ∴点 D 为 TC 的中点, ∴DP 为△TCM 的中位线, 1PD / /CM , PD CM ∴.2【点睛】本题主要考查了矩形的判定与性质、等腰三角形的性质、三角形全等的判定与性质、以及相似三 角形的判定与性质、圆中直径的性质,关键在于通过等量代换,换出角相等,证明出直角三角形全等,再 证明三角形相似.
声明:如果本站提供的资源有问题或者不能下载,请点击页面底部的"联系我们";
本站提供的资源大部分来自网络收集整理,如果侵犯了您的版权,请联系我们删除。