2021 年广西来宾市中考数学试卷 一、选择题(本大题共 12 小题,共 36 分) 1. A. 下列各数是有理数的是( )3 3 0B. C. D. 2D【答案】 【解析】 【分析】利用有理数和无理数的定义判断即可. 3【详解】解:四个选项的数中: ,,是无理数, 0 是有理数, 32故选项 D 符合题意. 故选:D. 【点睛】此题考查了实数,熟练掌握有理数与无理数的定义是解本题的关键. 2. 如图是一个几何体的主视图,则该几何体是( )A. B. C. D. C【答案】 【解析】 的【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到 图形.依题意,由几何体 的主视图即可判断该几何体的形状. 【详解】解:由该几何体的主视图可知,该几何体是选项 C 中的图形. 故选:C. 【点睛】本题考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也考查了空 间想象能力. 3. 如图,小明从 A入口进入博物馆参观,参观后可从 B,,三个出口走出,他恰好从 出口走出的 DCC概率是( )14132312A. B. C. D. B【答案】 【解析】 【分析】此题根据事件的三种可能性即可确定答案 1【详解】当从 A 口进,出来时有三种可能性即:B,C,D;恰好从 C 口走出的可能性占总的 ,故概率为 31;3故答案选:B; 【点睛】此题考查事件的可能性,根据事件发生的所有可能确定概率即可. 4. 我国天问一号火星探测器于 2021 年 5 月 15 日成功着陆火星表面.经测算,地球跟火星最远距离 400000000 千米,其中 400000000 用科学记数法表示为( )4109 40 107 4108 0.4109 A. B. C. D. C【答案】 【解析】 【分析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数 变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 8【详解】解:将 400000000 这个数用科学记数法表示为: 故选:C. .410 【点睛】此题考查了科学记数法,熟练掌握科学记数法的基本要求并正确确定 a 及 n 的值是解题的关键. 5. 如图是某市一天的气温随时间变化的情况,下列说法正确的是( )A. 这一天最低温度是-4℃ B. 这一天 12 时温度最高 C. 最高温比最低温高 8℃ D.0 时至 8 时气温呈下降趋 势A【答案】 【解析】 【分析】根据气温变化图逐项进行判断即可求解. 4C 【详解】解:A. 这一天最低温度是 ,原选项判断正确,符合题意; B. 这一天 14 时温度最高,原选项判断错误,不合题意; C. 这一天最高气温 8℃,最低气温-4℃,最高温比最低温高 ,原选项判断错误,不合题意; 12C 0D. 时至 时气温呈先下降在上升趋势,原选项判断错误,不合题意. 8故选:A 【点睛】本题考查了根据函数图象读取信息,理解气温随时间变化而变化并从中读取信息是解题关键. 6. 下列运算正确的是( )3a2 a5 a2 a3 a5 a6 a2 a3 3a2 2a a2 A. B. C. D. A【答案】 【解析】 【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解. 【详解】解:A. 5 ,原选项计算正确,符合题意; a2 a3 a a6 a2 a B. C. D. 4 ,原选项计算错误,不合题意; 3a2 a6 ,原选项计算错误,不合题意; 2,不是同类项,无法相减,原选项计算错误,不合题意. 3a 2a 故选:A 【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减等知识,熟知相关运算公 式和法则是解题关键. P(3,4) 7. 平面直角坐标系内与点 关于原点对称的点的坐标是( )(3,4) (3,4) (3,4) (4,3) D. A. B. C. B【答案】 【解析】 的【分析】根据关于原点对称 点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,可以直接得 到答案. 【详解】解:∵P(3,4), ∴关于原点对称点的坐标是(-3,-4), 故选 B. 【点睛】此题主要考查了原点对称的点的坐标特点,关键是掌握坐标的变化规律:两个点关于原点对称时, 它们的坐标符号相反. 8. O 如图, 的半径 为,于点 ,,则 的长是( )OB OC AB BAC 30 OD D4A. B. C. D. 3232C【答案】 【解析】 【分析】根据圆周角定理求出∠COB 的度数,再求出∠OBD 的度数,根据“30°的锐角所对的直角边等于 斜边的一半”求出 OD 的长度. 【详解】∵ ∠BAC=30°, ∴∠COB=60°, ∵∠ODB=90°, ∴∠OBD=30°, ∵OB=4, 1214 ∴OD= OB= =2. 2故选:C. 【点睛】本题考查了圆周角定理,直角三角形的性质,掌握相关定理和性质是解题的关键. 9. 一次函数 y=2x+1 的图像不经过 ( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 D【答案】 【解析】 【分析】根据一次函数的系数判断出函数图象所经过的象限,由 k=2>0,b=1>0 可知,一次函数 y=2x+1 的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答. 【详解】∵k=2>0,b=1>0, ∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限. 故选 D. 【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定 k、b 的正负. 10. 《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车, 九人步.问:人与车各几何?译文:若 人坐一辆车,则两辆车是空的;若 人坐一辆车,则 人需要步 932y行.问:人与车各多少?设有 辆车,人数为 ,根据题意可列方程组为( x)y 3x 2 y 2x 9 y 3(x 2) y 2x 9 y 3x 2 y 2x 9 y 3(x 2) y 2x 9 A. B. C. D. B【答案】 【解析】 yx【分析】设有 辆车,人数为 ,根据“如果每 3 人坐一辆车,那么有 2 辆空车;如果每 2 人坐一辆车, 那么有 9 人需要步行”,即可得出关于 x,y 的二元一次方程组,此题得解. y【详解】解:设有 辆车,人数为 人,依题意得: xy 3(x 2) y 2x 9 ,故选:B. 【点睛】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次 方程组是解题的关键. 11. 如图,矩形纸片 ,,点 ,分别在 ,BC 上,把纸片如图沿 EF 折叠, ABCD EFAD AD : AB 2 :1 EF 点A,B的对应点分别为 A,,连接 并延长交线段 于点 G,则 的值为( )CD BAA AG 21C. 225A. B. D. 233A【答案】 【解析】 【分析】根据折叠性质则可得出 是的垂直平分线,则由直角三角形性质及矩形性质可得 EF AA ∠AEO=∠AGD,∠FHE=∠D=90°,根据相似三角形判定推出△EFH∽△GAD,再利用矩形判定及性质 证得 FH=AB,即可求得结果. 【详解】解:如图,过点 F 作 FH⊥AD 于点 H, ∵点 A,B的对应点分别为 A,,B∴EA EA ,,FB FB ∴EF 是 AA'的垂直平分线. ∴∠AOE=90°. ∵四边形 是矩形, ABCD ∴∠BAD=∠B=∠D=90°. ∴∠OAE+∠AEO=∠OAE+∠AGD, ∴∠AEO=∠AGD. ∵FH⊥AD, ∴∠FHE=∠D=90°. ∴△EFH∽△GAD. EF FH ∴.AG AD ∵∠AHF=∠BAD=∠B=90°, ∴四边形 ABFH 是矩形. ∴FH=AB. EF FH AB 12∴;AG AD AD 22故选:A. 【点睛】本题考查了矩形的折叠问题,掌握折叠的性质、矩形及相似三角形的判定与性质是解题的关键. a,a b b,a b ab (2x 1)(2 x) 3 12. 定义一种运算: ,则不等式 的解集是( )1113x 1 x x A. x 1 或B. C. x 1 或x 1 D. 或x 1 33C【答案】 【解析】 【分析】根据新定义运算规则,分别从 后即可得出结论. 和2x 1 2 x 2x 1 2 x 两种情况列出关于 x 的不等式,求解 【详解】解:由题意得,当 时, 2x 1 2 x 13(2x 1)(2 x) 2x 1 x 即则时, ,,2x 1 3 解得 x 1 ,∴此时原不等式的解集为 x 1 ;当即则时, 2x 1 2 x 1(2x 1)(2 x) 2 x x 时, ,3,2 x 3 解得 x 1 ,∴此时原不等式的解集为 x 1 ;(2x 1)(2 x) 3 综上所述,不等式 的解集是 x 1 或x 1 .故选:C. 【点睛】本题主要考查解一元一次不等式,解题的关键是根据新定义运算规则列出关于 x 的不等式. 二、填空题(本大题共 6 小题,共 18 分) 113. 要使分式 有意义,则 x 的取值范围是_______. x 2 【答案】x≠2 【解析】 【分析】分式有意义,则分母 x-2≠0,由此易求 x 的取值范围. 1【详解】解:当分母 x-2≠0,即 x≠2 时,分式 故答案为:x≠2. 有意义. x 2 【点睛】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为 零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 2214. 分解因式: ______. a 4b a 2b a 2b 【答案】 【解析】 【分析】利用平方差公式进行因式分解即可. 2a2 2b .22a 2b a 2b 【详解】解: =a 4b a 2b a 2b 故答案为 .【点睛】本题考查了因式分解.熟练掌握平方差公式是解题的关键. 15. 如图,从楼顶 A处看楼下荷塘 处的俯角为 C,看楼下荷塘 处的俯角为 D,已知楼高 为45 60 30 AB 米,则荷塘的宽 为__________米.(结果保留根号) CD 【答案】 30 10 3 【解析】 【分析】由三角函数分别求出 BC、BD,即可得出 CD 的长. 【详解】解:由题意知:∠BAC=90°-45°=45°,△ABC 是直角三角形, BC 在 Rt△ABC 中,tan∠BAC = ∴BC=AB•tan45°=30 米, ,AB=30 米, AB BD ∵∠BAD=90°-60°=30°,tan∠BAD = ,AB 3∴BD=AB•tan30°= (米), 30 10 3 3∴CD=BC-BD= (米); 30 10 3 故答案为: .30 10 3 【点睛】本题考查了解直角三角形的应用,由三角函数求出 BC 和 BD 是解决问题的关键解题的关键. 16. 为了庆祝中国共产党成立 周年,某校举行“党在我心中”演讲比赛,评委将从演讲内容,演讲能力, 100 演讲效果三个方面给选手打分,各项成绩均按百分制计,然后再按演讲内容占50%,演讲能力占 ,演 40% 95 ,90,她的综合成绩是 讲效果占10% ,计算选手的综合成绩(百分制).小婷的三项成绩依次是84 __________. ,【答案】89 【解析】 【分析】根据加权平均数的定义列式计算可得. )(分 , 8450% 95 40% 9010% 89 【详解】解:选手甲的综合成绩为 故答案为:89 分. 【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义. 17. 如图,从一块边长为 ,的菱形铁片上剪出一个扇形,这个扇形在以 A为圆心的圆上(阴 A 120 2影部分),且圆弧与 BC 是__________. ,分别相切于点 ,,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径 CD EF3【答案】 3【解析】 30° AE 角的直角三角形,再利用勾股定理求出 ,最后利用弧长公式求出 【分析】先利用菱形的性质得到含 弧长,弧长即为圆锥底面圆的周长,再利用周长公式即可求半径. AE 【详解】解:如图,连接 ,由切线性质可知: AE⊥BC ∠AEB=90° ,即 ; ∵∠BAD=120° ,菱形铁片上 ∴∠B=180°-120°=60° ,∴∠BAE=30° ∴AB=2BE=2 ,,∴BE=1 ,222∵,AB BE AE ∴,AE 3 120 3π 2 3 ∴扇形的弧长为: ,π180 32 3 π所以圆锥底面圆半径为: ,332π 33故答案为: .330° 角的直角三角形的性质、勾股定理、弧长公式等内容,解决本题的 【点睛】本题考查了菱形的性质、含 关键是牢记相关性质与公式,本题需要学生理解扇形与圆锥的关系,蕴含了一定的空间想象思维,涉及到 了数形结合等思想方法. 在抛物线 y = x2 上,向左或向右平移抛物线后, C(3,9) D(2,4) B(1,0) A(3,0) 18. 如图,已知点 ,,两点 ,¢ __________ ,的对应点分别为 C,D,当四边形 ABC D的周长最小时,抛物线的解析式为 .CD225 13 【答案】 【解析】 .y x 【分析】先通过平移和轴对称得到当 B、E、 三点共线时, 的值最小,再通过设直线 的解 C ‘ BC ‘ BE BC ‘ 析式并将三点坐标代入,当 时,求出 a 的值,最后将四边形周长与 时的周长进行比较,确定 a a 4 a 4 的最终取值,即可得到平移后的抛物线的解析式. B(1,0) A(3,0) C(3,9) D(2,4) ,【详解】解:∵ ,,,,22∴,AB 31 2 CD 3 2 9 4 5 2 由平移的性质可知: ,C ‘D’ CD 5 2 ∴四边形 ABC D的周长为 ;AB BC ‘ C ‘D’ D’ A 2 BC ‘ 5 2 D’ A 要使其周长最小,则应使 的值最小; BC ‘ D’ A 设抛物线平移了 a 个单位,当 a>0 时,抛物线向右平移,当 a<0 时,抛物线向左平移; C ‘ 3 a,9 D’ 2 a,4 ∴,,D” a,4 将向左平移 2 个单位得到 ,则由平移的性质可知: ,D’ BD” AD’ D” a,4 E a,4 将∴关于 x 轴的对称点记为点 E,则 ,由轴对称性质可知, ,BD” BE ,BC ‘ D’ A BC ‘ BE 当 B、E、 三点共线时, 的值最小, C ‘ BC ‘ BE y kx b k 0 设直线 的解析式为: ,BC ‘ 3 a k b 9 ∴,k b 0 当时, a 4 9k a 4 9∴b 4 a 99y x ∴,a 4 4 a 994 a 将 E 点坐标代入解析式可得: ,a 4 4 a 25 a 解得: 此时 ,13 22,BC ‘ BE C ‘E 3 a a 9 4 178 此时四边形 ABC D的周长为 ;AB BC ‘ C ‘D’ D’ A 2 5 2 178 B(1,0) ,C ‘ 1,9 D’ 6,4 A(3,0) , , 当时, ,a 4 此时四边形 ABC D的周长为: 22;AB BC ‘ C ‘D’ D’ A 2 9 0 5 2 6 3 4 0 16 5 2 ∵,2 5 2 178 16 5 2 25 a ∴当 时,其周长最小, 13 25 所以抛物线向右平移了 个单位, 13 225 13 所以其解析式为: ;y x 225 13 故答案为: .y x 【点睛】本题综合考查了平移、轴对称、一次函数的应用、勾股定理、抛物线的解析式等内容,解决本题 的关键是理解并确定什么情况下该四边形的周长最短,本题所需综合性思维较强,对学生的综合分析和计 算能力要求都较高,本题蕴含了数形结合与分类讨论的思想方法等. 三、解答题(本大题共 8 小题,共 66 分) 123 1 (1 3) 19. 计算: .2【答案】-2 【解析】 【分析】先分别计算出有理数的乘方及括号内的有理数加减,再计算乘除,即可求得结果. 123 1 (1 3) 【详解】解: 21 8 (2) 2 4 (2) . 2 【点睛】此题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序及相关运算法则是解答此题 的关键. xx20. 1 解分式方程: .x 1 3x 3 【答案】 x 3 【解析】 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的 解. xx1 【详解】解: x 1 3x 3 3x x 3(x 1) 去分母,得 ,解此方程,得 x 3 ,经检验, x 3是原分式方程的根. 【点睛】本题考查了解分式方程,解分式方程的关键是将分式方程转化为整式方程,不要忘记检验. 21. 如图,四边形 中, ,,连接 .ABCD AB//CD AC B D (1)求证: ;△ABC ≌ △CDA (2)尺规作图:过点 作的垂线,垂足为 (不要求写作法,保留作图痕迹); ECAB (3)在(2)的条件下,已知四边形 的面积为 ,20 AB 5 ,求 的长. ABCD CE 【答案】(1)证明见详解;(2)作图见详解;(3)CE=4. 【解析】 【分析】(1)根据 ,得到∠BAC=∠DCA,结合 ,AC=CA,利用“AAS”即可证明; AB//CD B D (2)如图,延长 AB,任意取一点 H,使 H 和点 C 在 AB 两侧,以 C 为圆心,CH 为半径画弧,交 AB 于 1F、G,分别以 F、G 为圆心,以大于 FG 长为半径画弧,两弧交于 I,作直线 CI,交 AB 延长线于 E,则 2CD⊥AB 与 E; (3)证明四边形 ABCD 为平行四边形,根据平行四边形面积公式即可求解. 【详解】解:(1)∵ ∴∠BAC=∠DCA, ,AB//CD 又∵ ∴,AC=CA, B D ;△ABC ≌ △CDA (2)如图,延长 AB,任意取一点 H,使 H 和点 C 在 AB 两侧,以 C 为圆心,CH 为半径画弧,交 AB 于 1F、G,分别以 F、G 为圆心,以大于 FG 长为半径画弧,两弧交于 I,作直线 CI,交 AB 延长线于 E,则 2CD⊥AB 与 E; (3)∵ ,△ABC ≌ △CDA ∴AB=CD, ∵,AB//CD ∴四边形 ABCD 为平行四边形, ∴,ABCE 20 即 5CE=20, ∴CE=4. 【点睛】本题考查了全等三角形的判定与性质,平行四边形的判定,过直线外一点作已知直线的垂线等知 识,综合性较强,熟知相关知识点,并根据题意灵活应用是解题关键. kg 5kg ,在出售荔枝前,需要去掉损坏的荔 22. 某水果公司以 元/ 的成本价新进 箱荔枝,每箱质量 10 2000 kg 箱,去掉损坏荔枝后称得每箱的质量(单位: )如下: 枝,现随机抽取 20 4.7 4.8 4.6 4.5 4.8 4.9 4.8 4.7 4.8 4.7 4.8 4.9 4.7 4.8 4.5 4.7 4.7 4.9 4.7 5.0 整理数据: 分析数据: 平均数 kg 质量( )4.7 4.8 4.9 3众数 中位数 4.5 24.6 15.0 17ac数量(箱) 4.75 bac, , 的值; (1)直接写出上述表格中 (2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其 中一个统计量,估算这 箱荔枝共损坏了多少千克? b2000 (3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本?(结果保留一位小数) 【答案】(1)a=6,b=4.7,c=4.75;(2)500kg;(3)10.5 元. 【解析】 【分析】(1)用 20 减去各数据的频数即可求出 a,根据众数、中位数的意义即可求出 b、c; (2)选用平均数进行估算,用每箱损坏数量乘以 2000 即可求解; 的(3)用购买 总费用除以没有损坏的总数量即可求出解. 【详解】解:(1)a=20-2-1-7-3-1=6; 在这 20 个数据中,4.7 频数最大,所以众数 b=4.7; 4.7 4.8 =4.75 将这 20 个数据排序,第 10、11 个数据分别为 4.7、4.8,所以中位数 c= (2)选用平均数进行估算,(5-4.75)×2000=500kg, ;2答:选用平均数进行估算,这 箱荔枝共损坏了 500千克; 2000 (3)(10×2000×5)÷(4.75×2000)≈10.5元 答:该公司销售这批荔枝每千克定为 10.5元才不亏本. 【点睛】本题考查用众数、中位数、用样本估计总体等知识,熟知相关概念并理解题意是解题关键. l //l 23. 【阅读理解】如图 1, ,2ABC 的面积与 的面积相等吗?为什么? △DBC 1AE l DF l 解:相等,在ABC 和△DBC 中,分别作 ,,垂足分别为 2,.EF2AEF DFC 90 ,. AE//DF Ql1 //l2 ,四边形 是平行四边形, AEFD . AE DF 11S BC AE S BC DF 又,,V ABC △DBC 22S△ABC S△DBC .【类比探究】问题①,如图 2,在正方形 的右侧作等腰 ,△CDE CE DE ,AD 4 ,连接 ,AE ABCD 求的面积. ADE 解:过点 作于点 ,连接 F.EF CD AF E请将余下的求解步骤补充完整. 【拓展应用】问题②,如图 3,在正方形 的右侧作正方形CEFG ,点 B,,在同一直线上, ABCD CEAD 4 ,连接 ,,,直接写出 的面积. BD BF DF BDF S 4 S=8 .BDF 【答案】① 【解析】 ;② △ADE S SADF 【分析】①过点 作于点 ,连接 F,可得 EF / /AD,根据材料可知 ,再由 EF CD AF EADE 1SDF CD 等腰三角形性质可知 ,即可求出 ;△ADF 2S SBDC ②连接 CE,证明 BD / /CE ,即可得 ,由此即可求解. BDF 【详解】解:①过点 作于点 ,连接 F,EF CD AF E∵在正方形 中, ADC 90 ,ABCD ∴∴∵,EF / /AD S SADF ,ADE ,CE DE EF CD ,1DF CD ∴,2∵在正方形 中, ,ABCD AD = CD = 4 11S S△ADF = AD DF 42 4 ∴;△ADE 22S=8 ,②BDF 过程如下:如解图 3,连接 CE, ∵在正方形 、正方形 ABCD CEFG 中, ∴,BDC FCE 45 ∴,CF / /BD S SBDC ∴,BDF ∵在正方形 中, AD BC CD 4 ,,ABCD BCD 90 S SBDC =8 ∴.BDF 【点睛】本题主要考查了正方形性质和平行线判定和性质以及三角形面积,解题关键是理解阅读材料,根 据平行线找到等底等高的三角形. 24. 2022 年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示 y作水平线的垂线为 轴,建立平面直角坐标系.图中的 x意图,取某一位置的水平线为 轴,过跳台终点 A17C :y x2 x 1 抛物线 近似表示滑雪场地上的一座小山坡,某运动员从点 正上方米处的 点 AO4112 61C : y x2 bx c 滑出,滑出后沿一段抛物线 运动. 28CA处的水平距离为 米时,离水平线的高度为 米,求抛物线 2 的函数解析式(不 (1)当运动员运动到离 84x要求写出自变量 的取值范围); (2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为 米? 1(3)当运动员运动到坡顶正上方,且与坡顶距离超过 米时,求 的取值范围. 3b1335 24 y x2 x 4 b 【答案】(1) ;(2)12 米;(3) .82【解析】 1C : y x2 bx c 【分析】(1)根据题意可知:点 A(0,4)点 B(4,8),利用待定系数法代入抛物线 28即可求解; C C =1 (2)高度差为 1 米可得 可得方程,由此即可求解; 211761 C :y x2 x 1 (7, )x 7 (3)由抛物线 可知坡顶坐标为 ,此时即当 时,运动员运动到坡顶 112 61 12 61y 72 7b c 3 正上方,若与坡顶距离超过 米,即 3,由此即可求出 b 的取值范围. 812 1C : y x2 bx c 【详解】解:(1)根据题意可知:点 A(0,4),点 B(4,8)代入抛物线 得, 28c=4 , 1 42 4b c=8 8c=4 解得: ,3b= 213y x2 x 4 C∴抛物线 2 的函数解析式 ;82(2)∵运动员与小山坡的竖直距离为 米, 11317( x2 x 4) ( x2 x 1) 1 ∴,8212 6x 4 x 12 解得: (不合题意,舍去), ,12故当运动员运动水平线的水平距离为 12 米时,运动员与小山坡的竖直距离为 米; 1(3)∵点 A(0,4), 1C : y x2 bx 4 ∴抛物线 ,2817161 12 C :y x2 x 1= (x 7)2 ∵抛物线 ∴坡顶坐标 ,112 61 612 (7, )为,12 ∵当运动员运动到坡顶正上方,且与坡顶距离超过 米时, 3161 y 72 7b 4 3 ∴,812 35 24 b 解得: .【点睛】本题属二次函数应用中的难题.解决函数应用问题的一般步骤为:(1)审题:弄清题意,分清条件 和结论,理清数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型;(3) 求模:求解数学模型,得到数学结论;(4) 还原:将用数学方法得到的结论还原为实际问题. 25. AD BC 于点 如图①,在ABC 中, ,,BC 14 AD 8 ,BD 6 点是上一动点(不与 DAD EDE x 点A,重合),在ADC 内作矩形 EFGH ,点 在上,点 G,H在上,设 ,连接 DC AC DFBE .(1)当矩形 EFGH 是正方形时,直接写出 的长; EF S1 S2 yx,求 关于 的函数解析式(不要求写 y SS(2)设 的面积为 1 ,矩形 EFGH 的面积为 2 ,令 △ABE x出自变量 的取值范围); yx的直线 分别与轴正半轴, P(a,b) (3)如图②,点 是(2)中得到的函数图象上的任意一点,过点 Pl轴正半轴交于 ,两点,求 面积的最小值,并说明理由. NOMN M38 2 y 【答案】(1) ;(2) ;(3)6 x3【解析】 1EF AC 【分析】(1)直接根据等腰直角三角形性质及正方形性质可以得出: ,进一步计算即可; 31S (8 x)6 3(8 x) (2)先根据等腰直角三角形以及直角三角形得出 ,12S1 2y ,代入 化简即可; S2 2x (8 x) x(8 x) S2 2by kx b(k 0) M ( ,0), N(0,b) (3)设 l: ,则 ,当 面积的最小时,两个函数图像仅有一个 OMN k交点,列出 面积的表达式求解即可. OMN ADC,AHE,CGF,EDF 【详解】解:(1)根据题意:可知 1EF FG GC HG AH AC 均为等腰直角三角形,则 ,3∵,BC 14 AD 8 ,BD 6 ,∴DC=8, ∴AC= ,8 2 8 2 3∴;EF (2)∵四边形 EFGH 为矩形, EF∥AC, EH AC ∴,∴∵,EFD C 45 ,DE=x DE EF 2x ∴在 ∴中, ,Rt△DEF sin 45 ,AE 8 x 2∴∵∴,EH AE sin 45 (8 x) 2S EFEH ,22,S2 2x (8 x) x(8 x) 21S AEBD ∵∴,121S (8 x)6 3(8 x) ,12S1 3(8 x) S2 x(8 x) y ∴∴,3y ;x3y (3)由(2)得 P 在 上, xby kx b(k 0) M ( ,0), N(0,b) 设 l: ,则 ,k的面积 最小时,两个函数图像仅有一个交点, 当OMN 32 kx b 令则∴,得 ,kx bx 3 0 x=b2 12k 0,b2 12k ,1S OM ON ,OMN 21b ( )b ,2k1 b2 ,= 2 k 1 12k = 2 k ,=6 .【点睛】本题主要考查正方形性质,矩形的性质,勾股定理,特殊角锐角三角函数,反比例函数与一次函 数综合问题,能够根据题意列出相应的方程是解决本题的关键. 26. O O 如图,已知 ,AD EF 是的直径, ,2与的边 ,分别交于点 ,OABC OC A D 6 AB E,连接 并延长,与 的延长线交于点 G,AFE OCD .CD AF MO (1)求证: 是的切线; 的值; CD GF 1 (2)若 ,求 cosAEF AB O (3)在(2)的条件下,若ABC 的平分线 交CO于点 H,连接 交于点 ,求 N的BH AH NH 值. 157 3【答案】(1)见解析;(2) ;(3) .3【解析】 【分析 】(1)连接 DF,由圆周角性质可得 AFE OCD , 则利 用 平 行线 的 判定 与 性 质可 得 ,再根据等腰三角形性质及直角三角形性质可推出 ,即可证得结 FDA DOC DOC OCD 90 论; FD FG 2GF 1 得出 (2)由相似三角形的判定可得 ,则推出 的值; ,由 ,可利用勾 FDG∽FAD FD FA FA FD 股定理求得 ,即可求出 cosAEF O FD 2 2 (3)连接 MN,并延长 CO 与 AF, 分别相交于点 P,点 Q,连接 AQ,利用(2)所得结论及已知分别 求得 ,,,,,PH 7 2AH 114 ,再 HQ 9 2 CH BC 3 2OC AB 9 2MH 3 2 AB QH AH 由相似三角形的判定及性质可推出 ,代入求值后即可求得 的值. NH MH NH 【详解】(1)证明:如图,连接 DF, O ∵∴是的直径, EF AFE OCD .∴DF∥AE. ∵四边形 ABCD 是平行四边形, ∴AE∥OC. ∴DF∥OC. ∴∵∴∵∴.FDA DOC ,OF OA .FAD AFE AFE OCD FAD OCD ,.∵∴,FDA FAD 90 .DOC OCD 90 ∴∴∴.ODC 90 .OD CD O 是的切线. CD (2)解:∵ ,ADG GFD 90 ∴.G FDG G FAD 90 ∴.FDG FAD ∴.FDG∽FAD FD FG ∴.FA FD GF 1 ∵,2∴设.FD FG FA 2,则 .FD x AF x 222由勾股定理得 ,AF DF AD 242即,x x 6 2 ,x 2 8 x 9 2解得 ∴(不合题意,舍去). 12.x 2 2 FD ∵∴,AEF ADF cosAEF cosADF FD 2 2 1.AD 36 2 O (3)解:连接 MN,并延长 CO 与 AF, 分别相交于点 P,点 Q,连接 AQ, ∵四边形 ABCD 是平行四边形, ∴,,AB∥OC. OC AB AO BC 3 2 CHB ABH ∴∵∴∴,平分ABC ,BH ..CBH ABH CHB CBH ∴∵∴.CH BC 3 2 FAD DOC DF sin DOC AD 1OD sin FAD .3OC ∵∴∴∴,OD OM 3 2 .OC AB 9 2 .MH OC OM CH 3 2 .HQ MH MQ 9 2 HQ AB ∴.∵AB∥OC, ∴.OPE FAE 90 ∴∵.OP AF ,OE OA 1AP AF 4 ∴.22222在 Rt△APO 中,由勾股定理得 .OP OA AP 3 2 4 2 ∴.PH 7 2 2222在 Rt△APH 中,由勾股定理得 .AH PH AP 7 2 4 114 NMH QMN QAH QMN 180 ∵,NMH QAH ∴∵∴.,MHN MHN MHN∽AHQ .QH AH ∴∴.NH MH AB AH 114 57 3.NH MH 3 2 【点睛】本题属于圆的综合问题,考查了圆周角定理、切线的判定与性质、相似三角形的判定与性质及求 角的三角函数值等知识,熟练掌握圆的相关知识及相似三角形的判定与性质等知识是解题的关键.
声明:如果本站提供的资源有问题或者不能下载,请点击页面底部的"联系我们";
本站提供的资源大部分来自网络收集整理,如果侵犯了您的版权,请联系我们删除。