精品解析:黑龙江省绥化市2020年中考数学试题(解析版)下载

精品解析:黑龙江省绥化市2020年中考数学试题(解析版)下载

  • 最近更新2023年07月17日






二○二○年绥化市初中毕业学业考试数学试题 一、单项选择题(本题共 10个小题,每小题 3分,共 30分)请在答题卡上用 28铅笔将你的 选项所对应的大写字母涂黑 1. 化简 的结果正确的是( )| 2 3| A. B. C. D. 2 3  2  3 2  3 3 2 D【答案】 【解析】 【分析】 由绝对值的意义,化简即可得到答案. 【详解】解: ;| 23| 3 2 故选:D. 【点睛】本题考查了绝对值的意义,解题的关键是掌握负数的绝对值是它的相反数. 2. 两个长方体按图示方式摆放,其主视图是( )A. B. C. D. C【答案】 【解析】 【分析】 依据从该几何体的正面看到的图形,即可得到主视图. 【详解】解:由图可得,几何体的主视图是: .故选:C. 【点睛】此题考查了三视图的作图,主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的 图形. 3. 下列计算正确的是( )32B. a2  a6 C. D. a3 a  a6 b2 b3  b6 a2  a  a A.   B【答案】 【解析】 【分析】 根据同底数幂的乘法法则、幂的乘方法则、同底数幂的的除法法则计算即可. 23【详解】解:A、 5 ,故选项 A 错误; b b  b 3a2  a6 ,故选项 B 正确; ,故选项 C 错误; B、 C、 D、 2a  a  a 2a3 a  a6 a  a7 ,故选项 D 错误, 故选:B. 【点睛】本题考查了同底数幂的乘法法则、幂的乘方法则、同底数幂的的除法法则,熟练掌握幂的运算法 则是解决本题的关键. 4. 下列图形是轴对称图形而不是中心对称图形的是( )A. B. C. D. C【答案】 【解析】 【分析】 根据轴对称图形和中心对称图形的概念对各个选项判断即可解答. 【详解】A.是轴对称图形,也是中心对称图形,故本选项不符合题意; B.是轴对称图形,也是中心对称图形,故本选项不符合题意; C.是轴对称图形,但不是中心对称图形,故本选项符合题意; D.是轴对称图形,也是中心对称图形,故本选项不符合题意; 故选:C. 【点睛】本题考查了轴对称图形和中心对称图形,熟练掌握轴对称图形和中心对称图形的概念是解答的关 键. 5. 下列等式成立的是( )13 8  2  64  8 A. B. C. D. a  a 16  4 aD【答案】 【解析】 【分析】 根据算术平方根、立方根、二次根式的化简等概念分别判断. 【详解】解:A. ,本选项不成立; 16  4 3B. C. D. ,本选项不成立; 8  2 1a=,本选项不成立; a  ag  a aa,本选项成立.  64  8 故选:D. 【点睛】本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识 点是解答问题的关键. 6. 学校八年级师生共 466 人准备参加社会实践活动,现已预备了 49 座和 37 座两种客车共 10 辆,刚好坐 满.设 49 座客车 x 辆,37 座客车 y 辆,根据题意可列出方程组( )x  y 10 x  y 10 x  y  466 x  y  466 A. B. C. D. 49x  37y  466 37x  49y  466 49x  37y 10 37x  49y 10 A【答案】 【解析】 【分析】 设 49 座客车 x 辆,37 座客车 y 辆,根据 49 座和 37 座两种客车共 10 辆,及 10 辆车共坐 466 人,且刚好坐 满,即可列出方程组. 【详解】解:设 49 座客车 x 辆,37 座客车 y 辆, x  y 10 根据题意得 : 49x  37y  466 故选:A. 【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住 题目中的一些关键性词语,找出等量关系,列出方程组. 7. 如图,四边形 是菱形,E、F 分别是 BC 、两边上的点,不能保证 和△ABE ADF 一定全等 ABCD CD 的条件是( )EC  FC A. B. C. AE  AF D. BAF  DAE BE  DF C【答案】 【解析】 【分析】 根据菱形的性质结合全等三角形的判定方法,对各选项分别判断即可得解. 【详解】∵四边形 是菱形, BAD  C ,ABCD ∴AB=BC=CD=DA, ,,B  D 如果 BAF  DAE ∴,即 , BAF  EAF   DAE  EAF BAE  DAF BAE  DAF AB  DA ∵∴,B  D (ASA),故 A 正确; △ABE ADF 如果 EC=FC, ∴BC-EC=CD-FC,即 BE=DF, AB  DA B  D BE  DF ∵,∴(SAS),故 B 正确; △ABE ADF 如果 AE=AF, ∵AB=DA, ,B  D 是 SSA,则不能判定 和△ABE ADF 全等,故 C 错误; 如果 ,BE  DF AB  DA B  D BE  DF 则∴,(SAS),故 D 正确; △ABE ADF 故选:C. 【点睛】本题考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须 是两边的夹角. 8. 在一个不透明的袋子中装有黑球 m 个、白球 n 个、红球 3 个,除颜色外无其它差别,任意摸出一个球是 红球的概率是( )3A. 3m  n m  n  3 m  n B. C. D. m  n m  n  3 3B【答案】 【解析】 【分析】 根据概率的公式计算,即可得到答案. 【详解】解:∵袋子中装有黑球 m 个、白球 n 个、红球 3 个, 3∴摸出一个球是红球的概率是 ;m  n  3 故选:B. 【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 29. 将抛物线 y  2(x 3)  2 向左平移 3 个单位长度,再向下平移 2 个单位长度,得到抛物线的解析式是 ()y  2(x  6)2 y  2(x  6)2  4 A. B. C. y  2×2 D. y  2×2  4 C【答案】 【解析】 【分析】 按照“左加右减,上加下减”的平移法则,变换解析式,然后化简即可. 【详解】解:将抛物线 y  2(x 3)2  2 向左平移 3 个单位长度,得到 y  2(x 3+3)2  2, 再向下平移 2 个单位长度,得到 y  2(x 3+3)2  2-2 整理得 y  2×2 ,,故选:C. 【点睛】本题考查了二次函数图象的平移,掌握“左加右减,上加下减”的法则是解题关键. 10. 如图,在 中, 为斜边 的中线,过点 D 作 于点 E,延长 至点 F,使 RtABC CD DE  AC AB DE AF,CF ,连接 ,点 G 在线段 上,连接 ,且 CF EG EF  DE 1CDE  EGC  180, FG  2,GC  3 DE  BC .下列结论:① ;②四边形 是平行四边形; DBCF 2EF  EG ③;④ .其中正确结论的个数是( )BC  2 5 A. 1 个 B. 2 个 C. 3 个 D. 4 个 D【答案】 【解析】 【分析】 根据直角三角形的性质知 DA=DB=DC,根据等腰三角形的性质结合菱形的判定定理可证得四边形 ADCF 为 菱形,继而推出四边形 DBCF 为平行四边形,可判断①②;利用邻补角的性质结合已知可证得∠CFE =∠FGE, FG FE ~即可判断③;由③的结论可证得△FEG △FCD,推出 ,即可判断④. FD FC 【详解】∵在 中, 为斜边 的中线, RtABC CD AB ∴DA=DB=DC, ∵于点 E,且 ,DE  AC EF  DE ∴AE=EC, ∴四边形 ADCF 为菱形, ∴FC∥BD,FC=AD=BD, ∴四边形 DBCF 为平行四边形,故②正确; ∴DF=BC, 1∴DE= BC,故①正确; 2∵四边形 ADCE 为菱形, ∴CF=CD, ∴∠CFE=∠CDE, ∵∠CDE+∠EGC=180 ,而∠FGE+∠EGC=180 , ∴∠CDE=∠FGE,∠CFE =∠FGE, ∴EF=EG,故③正确; ∵∠CDF=∠FGE,∠CFD=∠EFG, ~∴△FEG △FCD, 12FG FE FD 2∴∴,即 ,,FD FC FD 2  3 FD  2 5 ∴BC =DF ,故④正确;  2 5 综上,①②③④都正确, 故选:D. 【点睛】本题考查了菱形的判定和性质、直角三角形的性质、等腰三角形的性质、相似三角形的判定和性 质等知识,解题的关键是正确寻找全等三角形和相似三角形解决问题. 二、填空题(本题共 11个小题,每小题 3分,共 33分)请在答题卡上把你的答案写在相对 应的题号后的指定区域内 11. 新型冠状病毒蔓延全球,截至北京时间 2020 年 6 月 20 日,全球新冠肺炎累计确诊病例超过 8500000 数 字 8500000 用科学记数法表示为________. 6【答案】 8.510 【解析】 【分析】 n1 a 10 科学记数法的表示形式为 的形式,其中 ,n 为整数,确定 n 的值时,要看把原数变成 a a  10 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数的绝对值>1 时,n 是正数;当原数 的绝对值<1 时,n 是负数. 6【详解】解:将数字 8500000 用科学记数法表示为 ;8.510 6故答案为: .8.510 n1 a 10 【点睛】本题主要考查了科学记数法的表示方法,科学记数法的表示形式为 的形式,其中 ,a  10 n 为整数,表示时关键要正确确定 a 与 n 的值. 2甲212. 甲、乙两位同学在近五次数学测试中,平均成绩均为 90 分,方差分别为 S =0.70;S =0.73 ,甲、乙 乙两位同学成绩较稳定的是________同学. 【答案】甲 【解析】 【分析】 根据方差的定义,方差越小数据越稳定. S2  0.70 S2  0.73 【详解】解:∵甲的方差是 ,乙的方差是 ,0.73>0.70, 甲乙∴甲比乙的成绩稳定. ∴甲、乙两位同学成绩较稳定的是甲同学. 故答案是:甲. 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平 均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均 数越小,即波动越小,数据越稳定. 13. 黑龙江省某企业用货车向乡镇运送农用物资,行驶 2 小时后,天空突然下起大雨,影响车辆行驶速度, y km x h 货车行驶的路程 与行驶时间  的函数关系如图所示,2 小时后货车的速度是________km/h .【答案】65 【解析】 【分析】 根据函数图象中的数据,可以根据速度=路程 时间,计算2 小时后火车的速度. 【详解】解:观察图象可得,当 x=2 时,y=156,当 x=3 时,y=221. ∴2 小时后货车的速度是(221-156) (3-2)=65km/h .故答案是:65. 【点睛】本题主要考查一次函数的应用,解题的关键是理解题意,从实际问题中抽象出一次函数的模型, 并且得到关键的信息. 3214. 因式分解: _________. m n m  m(mn 1)(mn 1) 【答案】 【解析】 【分析】 先提公因式 m,再利用平方差公式即可分解因式. 【详解】解: m3n2  m  m(m2n2 1)  m(mn 1)(mn 1) m(mn 1)(mn 1) ,故答案为: .【点睛】本题考查了利用提公因式法和公式法因式分解,解题的关键是找出公因式,熟悉平方差公式. 15. 已知圆锥的底面圆的半径是 2.5,母线长是 9,其侧面展开图的圆心角是________度. 【答案】100 【解析】 【分析】 设这个圆锥的侧面展开图的圆心角为 n°,根据圆锥的底面圆周长=扇形的弧长,列方程求解. 【详解】解:设这个圆锥的侧面展开图的圆心角为 n°, ng g9 180 根据题意得 2π•2.5= ,解得 n=100, 即这个圆锥的侧面展开图的圆心角为 100°. 故答案为:100. 【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇 形的半径等于圆锥的母线长. 16. AB  AC  2, BC  8 在中, ,若 ,则 的长是________. RtABC C  90 AB 【答案】17 【解析】 【分析】 在 Rt△ABC 中,根据勾股定理列出方程即可求解. 【详解】解:∵在 Rt△ABC 中,∠C=90°,AB-AC=2,BC=8, ∴AC2+BC2=AB2, 即(AB-2)2+82=AB2, 解得 AB=17. 故答案为:17. 【点睛】本题考查了勾股定理,解答的关键是熟练掌握勾股定理的定义及其在直角三角形中的表示形式. 1△ A B C 17. 在平面直角坐标系中,ABC 和1 的相似比等于 ,并且是关于原点O 的位似图形,若点 A 的 1122,4 A ,则其对应点 1 的坐标是________. 坐标为 【答案】(4,8)或(﹣4,﹣8) 【解析】 【分析】 根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为 k,那么位似图形对应点的坐标的 比等于 k 或﹣k,即可求得答案. 【详解】解:在同一象限内, 1△ A B C ∵ABC 与 1 是以原点 O 为位似中心的位似图形,其中相似比等于 ,A 坐标为(2,4), 112A∴则点 1 的坐标为:(4,8), 不在同一象限内, 1△ A B C ∵ABC 与 1 是以原点 O 为位似中心的位似图形,其中相似比等于 ,A 坐标为(2,4), 112∴则点 A′的坐标为:(﹣4,﹣8), 故答案为:(4,8)或(﹣4,﹣8). 【点睛】此题考查了位似图形的性质,此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点 为位似中心,相似比为 k,那么位似图形对应点的坐标的比等于 k 或﹣k. x  3 x 1 118. 在函数 y  中,自变量 x 的取值范围是_________. x  5 【答案】 x  3 【解析】 且x  5 【分析】 根据二次根式的性质和分式的意义,被开方数大于或等于 0,分母不等于 0,可以求出 x 的范围. x 3  0 x 1 0 x 5  0 【详解】根据题意得: ,解得: 且x  3 x  5 .故答案为: 且x  3 x  5 .【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式 是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为 0;(3)当函数表达 式是二次根式时,被开方数非负. ,点 P 为  上一点(点 P 与点 D,点 E 不重合),连接 O 19. ABCDE 如图,正五边形 内接于 、PC DE ,DG  PC ,垂足为 G, PDG 等于________度. PD 【答案】54 【解析】 【分析】 连接 OC,OD,利用正五边形的性质求出∠COD 的度数,再根据圆周角定理求得∠CPD,然后利用直角三 角形的两锐角互余即可解答. 【详解】连接 OC,OD, ∵ABCDE 是正五边形, 360  72 ∴∠COD= ,51∴∠CPD= ∠COD=36º, 2∵DG  PC ,∴∠DGP=90º ∴∠PDG=90º-∠CPD=90º-36º=54º, 故答案为:54º. 【点睛】本题主要考查了圆内接正多边形的性质、圆周角定理、直角三角形的性质,熟练掌握圆心角与圆 周角之间的关系是解答的关键. 20. 某工厂计划加工一批零件 240 个,实际每天加工零件的个数是原计划的 1.5 倍,结果比原计划少用 2 天.设原计划每天加工零件 x 个,可列方程_________. 240 240  2 【答案】 x1.5x 【解析】 【分析】 设原计划每天生产零件 x 个,则实际每天生产零件为 1.5x 个,根据比原计划少用 2 天,列方程即可. 【详解】解:设原计划每天生产零件 x 个,则实际每天生产零件为 1.5x 个, 240 240  2  2 由题意,得 故答案是: ..x1.5x 240 240 x1.5x 【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的 等量关系,列方程即可. 21. 下面各图形是由大小相同的黑点组成,图 1 中有 2 个点,图 2 中有 7 个点,图 3 中有 14 个点,……,按 此规律,第 10 个图中黑点的个数是________. 【答案】119 【解析】 【分析】 根据题意,找出图形的规律,得到第 n 个图形的黑点数为 (n 1)2  2,即可求出答案. 【详解】解:根据题意, 第 1 个图有 2 个黑点; 第 2 个图有 7 个黑点; 第 3 个图有 14 个黑点; …… 第 n 个图有 (n 1)2  2个黑点; ∴当 n=10 时,有 (10 1)2  2 121 2 119 (个); 故答案为:119. 【点睛】本题考查了图形的变化规律,找出图形的摆放规律,得出数字之间的运算方法,利用计算规律解 决问题. 三、解答题(本题共 8个小题,共 57分)请在答题卡上把你的答案写在相对应的题号后的指 定区域内 22. (1)如图,已知线段 和点 O,利用直尺和圆规作ABC ,使点 O 是ABC 的内心(不写作法, AB 保留作图痕迹); C  90, AC  6, BC  8 (2)在所画的ABC 中,若 ,则ABC 的内切圆半径是______. 【答案】(1)作法:如图所示,见解析;(2)2. 【解析】 【分析】 (1)内心是角平分线的交点,根据 AO 和 BO 分别是∠CAB 和∠CBA 的平分线,作图即可; 的(2)连接 OC,设内切圆 半径为r,利用三角形的面积公式,即可求出答案. 【详解】解:(1)作法:如图所示: ①作射线 、AO BO ;②以点 A 为圆心,任意长为半径画弧分别交线段 ,射线 于点 D,E; AO AB ③以点 E 为圆心, 长为半径画弧,交上一步所画的弧于点 F,同理作出点 M; DE ④作射线 ,AF BM 相交于点 C,ABC 即所求. (2)如图,连接 OC, C  90, AC  6, BC  8 ∵,22由勾股定理,得: ,,AB  6 8 10 1SS 68  24 ∴∵∴∴;ABC ABC 2 SAOB  SAOC  SBOC ,111AB r  AC r  BC r  24 2122(10  6 8)r  24 ,2∴∴,r = 2 ABC 的内切圆半径是 2; 故答案为:2; 【点睛】本题考查了求三角形内切圆的半径,角平分线的性质,勾股定理,以及三角形的面积公式,解题 的关键是作出图形,利用所学的知识正确求出三角形内切圆的半径. 23. 如图,热气球位于观测塔 P 的北偏西 50°方向,距离观测塔 的 A 处,它沿正南方向航行一段时 100km 间后,到达位于观测塔 P 的南偏西 37°方向的 B 处,这时,B 处距离观测塔 P 有多远?(结果保留整数, 参考数据: ,,,,,sin37  0.60 cos37  0.80 tan37  0.75 sin50  0.77 cos50  0.64 .) tan50 1.19 【答案】 【解析】 【分析】 先在 .128km 中求出 PC,进而在 中即可求出 PB. RtPBC Rt△PAC A  50,B  37, PA 100km 【详解】解:由已知,得 .PC ,PA sin A  在中, Rt△PAC ∴.PC  PAsin50 100km0.77  77km PC sin B  在中, ,RtPBC PB PC 77km 0.60 PB  128km ∴..sin37 答: B 处距离观测塔约为 128km 【点睛】本题考查了解直角三角形的应用–方向角问题,结合航行中的实际问题,将解直角三角形的相关知 识有机结合,体现了数学应用于实际生活的思想. 24. 如图,在边长均为 1 个单位长度的小正方形组成的网格中,点 A,点 B,点 O 均为格点(每个小正方形 的顶点叫做格点). A(1)作点 A 关于点 O 的对称点 ;1A B A B ABA B 绕点 1 顺时针旋转 90°得点 B 对应点 1 ,画出旋转后的线段 ; 1 1 (2)连接 (3)连接 ,将线段 11AB ABA B 1 的面积. 11 ,求出四边形 【答案】作图见解析;(2)作图见解析;(3)24. 【解析】 【分析】 A(1)连接 AO 并延长一倍即可得到 ;1A B A正方形对角线,再找一个以 为顶点的 AB正方形,与 1 相对的点即为 , 1(2)由于 是一个 44 44 11A B 连接线段 ;11S SABB  S BB (3)连接 1 ,由 求出四边形面积. A BB1 四边形ABA B1 111【详解】如图所示 A(1)作出点 A 关于点 O 的对称点 ;1A B A B ;1 1 (2)连接 ,画出线段 1BB AE  BB AA F BB (3)连接 1 ,过点 A 作 1 于点 E,过点 1 作 1 于点 F; 1S四边形ABA B SABB  SA BB 1111111 BB1  AE  BB1  A F 12121 82  84 22. 24 ABA B ∴四边形 1 的面积是 24. 1【点睛】此题主要考查了图象的旋转以及中心对称,同时考查在网格中的面积计算问题,熟练掌握旋转变 换和中心对称变换的定义作出变换后的对应点是解题的关键. 25. 为了解本校九年级学生体育测试项目“400 米跑”的训练情况,体育教师在 2019 年 1-5 月份期间,每月 随机抽取部分学生进行测试,将测试成绩分为:A,B,C,D 四个等级,并绘制如下两幅统计图.根据统计 图提供的信息解答下列问题: (1)______月份测试的学生人数最少,______月份测试的学生中男生、女生人数相等; (2)求扇形统计图中 D 等级人数占 5 月份测试人数的百分比; (3)若该校 2019 年 5 月份九年级在校学生有 600 名,请你估计出测试成绩是 A 等级的学生人数. 【答案】(1)1,4;(2)D 等级人数占 5 月份测试人数的百分比是 15%;(3)该校 5 月份测试成绩是 A 等 级的学生人数约为 150 名. 【解析】 【分析】 (1)直接由折线统计图获取答案即可; (2)先根据 C 等级人数的圆心角是 72°,求出 C 等级人数占 5 月份测试人数的百分比,即可求出 D 等级人 数占 5 月份测试人数的百分比; (3)用成绩 A 等级的学生人数所占的百分比乘以 600 即可. 【详解】(1)由折线统计图可得 1 月份测试的学生人数最少,4 月份测试的学生中男生、女生人数相等, 故答案为:1,4; (2) ,72  360 100%  20% ,1 25%  40%  20%  15% 答:D 等级人数占 5 月份测试人数的百分比是 15%; (3)由样本可知,成绩 A 等级的学生人数所占的百分比为 25%, 可估计: (名), 60025%  150 答:该校 5 月份测试成绩是 A 等级的学生人数约为 150 名. 【点睛】本题考查了用样本估计总体,扇形统计图,由图表获取准确信息是解题关键. 26. O 如图,ABC 内接于 ,CD 是直径, ,CBG  BAC CD 与相交于点 E,过点 E 作 AB ,垂足为 F,过点 O 作 ,垂足为 H,连接 、.EF  BC OH  AC OA BD O (1)求证:直线 与相切; BG BE 54EF (2)若 ,求 的值. OD AC EF AC 58【答案】(1)见解析;(2) 的值是 .【解析】 【分析】 ( 1 ) 连 接OB , 根 据CD 是 直 径 得 到DBO  OBC  90, 再 根 据 圆 周 角 以 及 已 知 条 件 得 到 ,进而得到 即可证明; CBG  DBO CBG  OBC  90 (2)先证明 ,再利用相似比以及已知条件即可解答. BEF∽OAH 【详解】(1)连接 .OB ∵∴∴是圆 O 的直径, CD ,DBC  90 DBO  OBC  90 .  ∵BC  BC ∴∵∴∴∵∴∴∴∴∵.BAC  D OD  OB ,.D  DBO .,.BAC  DBO CBG  BAC CBG  DBO .CBG  OBC  90 .OBG  90 .OB  BG 是圆 O 半径, OB ∴直线 与圆 O 相切. BG OH  AC,OA  OC (2)∵ ,1AOH  AOC,2AH  AC ∴∵∴.2,AC  AC 1ABC  AOC ,2∴∵∴∴.AOH  ABC EF  BC,OH  AC ,.EFB  OHA  90 .BEF∽OAH BE EF ∴∵.OA AH BE 5 ,OD  OA ,OD 4BE EF 54∴∵∴.OA AH ,2AH  AC EF EF 5.AC 2AH 8EF AC 5∴的值是 .8【点睛】本题考查圆周角定理,切线的判定,相似三角形的判定和性质等知识,解题的关键是学会添加常 用辅助线,正确寻找相似三角形解决问题. kAB  2, BC  4 y  (x  0) 27. 如图,在矩形 中, ,点 D 是边 的中点,反比例函数 的图象经过 OABC AB 1xy  mx  n(m  0) 点 D,交 BC 边于点 E,直线 的解析式为 .DE 2ky  (x  0) (1)求反比例函数 的解析式和直线 的解析式; DE 1x(2)在 y 轴上找一点 P,使 的周长最小,求出此时点 P 的坐标; △ PDE (3)在(2)的条件下, 的周长最小值是______. △ PDE 10 34y  2x  6 0, y  (x  0) 【答案】(1) ,;(2)点 P 坐标为 ;(3) .13  5 21x【解析】 【分析】 (1)首先求出 D 点坐标,然后将 D 点坐标代入反比例解析式,求出 k 即可得到反比例函数的解析式.将 x=2 代入反比例函数解析式求出对应 y 的值,即得到 E 点的坐标,然后将点 D,E 两点的坐标代入一次函数的解 析式中,即可求出 DE 的解析式. ¢(2)作点 D 关于 y 轴的对称点 ,连接 ,交 y 轴于点 P,连接 .此时 的周长最小.然后求出 △ PDE DD E PD 直线的解析式,求 直线与 y 轴的交点坐标,即可得出 P 点的坐标; D E D E (3) 的周长的最小值为 DE+ ,分别利用勾股定理两条线段的长,即可求. D E △ PDE 【详解】解:(1)∵D 为 的中点, ,AB AB  2 1AD  AB 1 ∴.2∵四边形 是矩形, BC  4 ,OABC 1,4 .∴D 点坐标为 kD 1,4 y  (x  0) ∵在的图象上, 1x4y  (x  0) ∴当.∴反比例函数解析式为 .k  4 1xy  2 x  2 时, ..2,2 ∴E 点坐标为 E 2,2 y  mx  n(m  0) D 1,4 和点 ∵直线 过点 24  m  n, ∴2  2m  n m  2, n  6. 解得 y  2x  6 ∴直线 的解析式为 .DE 24y  (x  0) ∴反比例函数解析式为 ,1xy  2x  6 直线 的解析式为 .DE 2¢(2)作点 D 关于 y 轴的对称点 D,连接 ,交 y 轴于点 P,连接 .D E PD 1,4 此时 ∴点 的周长最小.∵点 D 的坐标为 ,△ PDE ¢1,4 .D的坐标为 y  ax  b(a  0) 设直线 ∵直线 的解析式为 .D E D 1,4 y  ax  b(a  0) 经过 4  a  b, ∴2  2a  b. 2a  , 3解得 10 b  .3210 3y  x  ∴直线 的解析式为 .D E 310 y  令,得 .x  0 310 30, ∴点 P 坐标为 .¢(-1,4).又 B(2,4), (3)由(1)(2)知 D(1,4),E(2,2), D¢B=3. D∴BD=1,BE=2, BD2 +BE2 在 Rt△BDE 中,由勾股定理,得 DE= =.5D’B2 +BE2 ¢¢E= 在 Rt△B DE中,由勾股定理,得 D=.13 的周长的最小值为 +DE = .D E △ PDE 13  5 【点睛】本题主要考查了反比例函数与一次函数的交点问题,矩形的性质,待定系数法求反比例函数和一 次函数的解析式,轴对称的最短路径问题等,难度适中,正确的求出解析式和找到周长最小时的点 P是解 题的关键. 28. 如图,在正方形 中, ,点 G 在边 BC 上,连接 AG ,作 于点 E, BF  AG DE  AG ABCD AB  4 BG EBF    k 于点 F,连接 BE 、,设 ,,.EDF   DF BC (1)求证: (2)求证: ;AE  BF tan  k  tan  ;(3)若点 G 从点 B 沿 BC 边运动至点 C 停止,求点 E,F 所经过的路径与边 围成的图形的面积. AB 【答案】(1)见解析;(2)见解析;(3)点 E,F 所经过的路径与边 AB 所围成图形的面积为 4. 【解析】 【分析】 (1)证明△AED≌△BFA,根据全等三角形的性质可得出结论; (2)证明 ,根据正方形的性质、相似三角形的性质证明; AED∽GBA (3)根据所围成的图形是△AOB,求出它的面积即可. 【详解】(1)证明:在正方形 中, ,ABCD AB  BC  AD BAD  ABC  90 .DE  AG, BF  AG ∵∴∴∵∴在,..,AED  BFA  90 ADE  DAE  90 BAF  DAE  90 .ADE  BAF 和AED VBFA 中, ADE  BAF, AED  BFA, AD  BA, ∴∴△AED≌△BFA ..AE  BF EF DE EF BF tan  ,tan   (2)在 和Rt△DEF Rt△EFB 中, .tan EF BFBF tan  DE EFDE ∴.ADE  BAG,AED  GBA  90 由①可知 ∴,.AED∽GBA AE DE ∴.GB AB 由①可知, ,AE  BF BF DE BF GB ∴∵∴∴.∴ .GB AB BG DE AB  k ,,AB  BC BC BF BG BG  k .DE AB BC tan tan   k .tan  k tan  ∴.DE  AG, BF  AG (3)∵ ∴.AED  BFA  90 ∴当点 G 从点 B 沿 BC 边运动至点 C 停止时,点 E 经过的路径是以 理可得点 F 经过的路径,两弧交于正方形的中心点 O.(如图所示) 为直径,圆心角为 90°的圆弧,同 AD ∵AB  AD  4 1S  S  44  4 ∴所围成图形的面积 AOB 4【点睛】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质,掌握正方形的性质、相似三 角形的判定定理和性质定理是解题的关键. 1129. 如图 1,抛物线 y  (x  2)2  6 y  x2  tx  t  2 y相交 y 轴于点 C,抛物线 1 与 x 轴 与抛物线 122y  kx  3 交于 A、B 两点(点 B 在点 A 的右侧),直线 交 x 轴负半轴于点 N,交 y 轴于点 M,且 2OC  ON .y(1)求抛物线 1 的解析式与 k 的值; y(2)抛物线 的对称轴交x 轴于点 D,连接 ,在 x 轴上方的对称轴上找一点 E,使以点 A,D,E 为 AC 1顶点的三角形与 相似,求出 的长; △AOC DE yy  kx  3 Q(3)如图 2,过抛物线 1 上的动点 G 作GH  x 轴于点 H,交直线 于点 Q,若点 是点Q 关 2Q于直线 MG 的对称点,是否存在点 G(不与点 C 重合),使点 落在y 轴上?若存在,请直接写出点 G 的 横坐标,若不存在,请说明理由. 35y  x2  3x  4 【答案】(1) ,k 的值为 ;(2) 的长为 或10;(3)存在,点 G 的横坐标为 DE 1487  65 7 65 1 5 1 5 或或或.4422【解析】 【分析】 11y  (x  2)2  6 y  x2  tx  t  2 (1)根据抛物线 可求得点 C 的坐标,代入 即可求得 t 的值,由 122N 的坐标,进而求得 k的值; ON  OC ,求得点 (2)因为∠AOC=∠EDA=90°已确定,所以分两种情况讨论△BDA 与△AOC 相似,通过对应边的比相等 可求出 DE 的长; (3)先根据题意画出图形,通过轴对称的性质等证明四边形 QMQ’G 为菱形,分别用字母表示出 Q,G 的 坐标,分两种情况讨论求出 GQ’的长度,利用三角函数可求出点 G 的横坐标. 11y  (x  2)2  6  (0  2)2  6  4 【详解】(1)当 时, ,x  0 22∴点 C 的坐标为 (0,4), 1y  x2  tx  t  2 ∵点 C (0,4)在抛物线 的图象上, 12∴∴,t  2  4 t  6 ,y  x2  3x  4 y∴抛物线 1 的解析式为 ,1∵C (0,4),ON  OC ,∴ON  OC  4 ,∴点 N 的坐标为 ( ,0), 4 y  kx  3 ∵直线 ∴过 N ( ,0), 4 24k  3  0 ,34k  解得 ,3y  x2  3x  4 y∴抛物线 1 的解析式为 ,k 的值为 ;14(2)连接 ,AE 2y  0 令,则 ,x  3x  4  0 1x  1,x  4 解得 ,12∴点 A 的坐标为 ( ,0),点 B 的坐标为 (4,0), 1 1 4 32y∴抛物线 1 的对称轴为直线 x  .23∴点 A 的坐标为 ( ,0), 2∵C (0,4), 5AD  ∴,AO 1 OC  4 ,,2①当 时, AOC∽EDA AO OC ,ED DA 1452∴∴,ED 5DE  ;8②当△AOC∽△ADE 时, AO OC ,AD DE 1524∴∴,,DE DE 10 5综上, 的长为 或10; DE 8QQ(3)如图,点 是点Q 关于直线 MG 的对称点,且点 在y 轴上时, QM  Q MQG  Q GQ MG  QMG ,由轴对称性质可知, ,,QG  x QG//y 轴. ∵轴,∴ Q MG  OGM ∴,,QMG  QGM ∴QM  QG ∴,,QM  Q M QG  Q G ∴QMQ G ∴四边形 为菱形, GQ //QN ∴作,GP  y 轴于点 P, G a, a2  3a  4 设,3Q a, a  3 则∴,4PG | a | ,349a  3  a2  3a  4  a2  a 1 Q G  GQ  ,4GQ //QN ∵∴,GQ P  NMO y  3 ,y  0 令,则 ,令 ,则 ,x  0 x  4 3y  x  3 ∴直线 与坐标轴的交点分别为 M (0,3),N( ,0), 4 4∴OM=3,ON=4, 2222在∴中, ,RtNMO MN  NO  MO  4  3  5 NO PG 45sinGQ P  sinNMO  ,MN GQ | a | 459∴,a2  a 1 47  65 7  65 1 5 1 5 ,解得 ,,,a1  a2  a3  a4  44227  65 7  65 1 5 1 5 都是所列方程的解, 经检验 ,,,a1  a2  a3  a4  44227  65 7 65 1 5 1 5 .综上,点 G 的横坐标为 或或或4422【点睛】本题是二次函数与几何的综合题,考查了用待定系数法求解析式,三角形相似的判定和性质,轴 对称的性质及三角函数等,解题关键是能够根据题意画出图形及灵活运用分类讨论的思想解题. 本试卷的题干 0635

分享到 :
相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注