精品解析:四川省广元市2020年中考数学真题(原卷版)下载

精品解析:四川省广元市2020年中考数学真题(原卷版)下载

  • 最近更新2023年07月17日






四川省广元市 2020 年中考数学真题 一、选择题(每小题 4 分,共 40 分)每小题给出的四个选项中,只有一个是符合题意的. 1. 2﹣ 的绝对值是() 1212A. 2 B. )B. C. D. D. 2 2. 下列运算正确的是( 22a2b  2a4b2 (a)2  a2 (a  b)2  a2  b2 a3a4  a12 A. C. 3. 如图所示的几何体是由 5 个相同的小正方体组成,其主视图为( )A. B. C. D. 4. 在 2019 年某中学举行的冬季阳径运动会上,参加男子跳高的 15 名运动员的成绩如表所示: 1 80 11 60 4成绩(m) 1.50 21.65 31.70 31.75 2人数 这些运动员跳高成绩的中位数和众数分别是( )1.70m,1.65m A. C. B. D. 1.70m,1.70m 1.65m,1.60m 1.65m,1.65m 5. 如图,a∥b,M、N 分别在 a,b 上,P 为两平行线间一点,那么∠1+∠2+∠3=( ). A. B. C. D. 540° 180° 360° 270° 6. 按照如图所示的流程,若输出的 ,则输入的 m 为( )M =  6 A. 3 B. 1 C. 0 D. -1 的7. 下列各图是截止 2020 年 6 月 18 日 新冠肺疫情统计数据,则以下结论错误的是( )19A. 图 1 显示印度新增确诊人数大约是伊朗的两倍.每百万人口的确诊人数大约是伊朗的 B. 图 1 显示俄罗斯当前的治愈率高于四班牙 的C. 图 2 显示海外新增确诊人数随时间 推移总体呈增长趋势 D. 图 3 显示在 2-3 月之间,我国现有确诊人数达到最多 x  m  0 7  2x 1 8. 关于 x 的不等式 的整数解只有 4 个,则 m 的取值范围是( )A. B. 2  m  1 C. D. 3  m  2 2  m  1 AB,CD 2  m  1 的9. 如图, O 是两条互相垂直的直径,点 P 从点 O 出发,沿 的路线匀速运动, O  C  B  O APD  y 设(单位:度),那么 y 与点 P 运动的时间(单位:秒)的关系图是( )A. B. C. D. sin x  sin x,cos x  cos x,cos x  y  cos xcos y sin xsin y 给出以下四个结论:(1) 10. 规定: 1222cos x  y  cos xcos y  sin xsin y ;(4) sin 30  ;(2) ;(3) cos2x  cos x sin x 6  2 4其中正确的结论的个数为( )cos15  A. B. C. D. 4 个 1 个 2 个 3 个 二、填空题(每小题 4 分,共 20 分)把正确答案直接填写在答题卡对应题目的横线上. 11. 近年来,四川省加快推进商业贸易转型升级,2019 年,四川全省商业贸易服务业增加值达 4194 亿元, 用科学计数法表示______________元. KK K ,3 中的两个时,能够让灯泡发光的概率为________. 212. 在如图所示的电路图中,当随机闭合开关 ,1m13. 14.  2  0 _____________ 的解为正数,则 m 的取值范围是 . 关于 x 的分式方程 2x 1 O, MH  BC AC 10, AH  8 O 如图,ABC 内接于 ______. 于点 H,若 ,的半径为 7,则 AB  ABC,ECD 5cm,3cm ,B、C、D 三点在同一条直线上,则 15. 如图所示, 均为等边三角形,边长分别为 ________________ 下列结论正确的 .(填序号) 13 CM  cm ⑤CM 平分 ①②③△CFG 为等边三角形 ④BE  7cm AD  BE BMD 7三、解答题(共 90 分)要求写出必要的解答步骤或证明过程 2 12016. 计算: 2sin 45   1 2  2020  1 a a1 a 2 a 1  17. 18. 先化简,再求值: ,其中 a 是关于 x 的方程 的根. x  2x 3  0 a2  a 已知ABCD ,O 为对角线 AC 的中点,过 O 的一条直线交 AD 于点 E,交 BC 于点 F. (1)求证: (2)若 ;△AOE≌△COF ,的面积为 2,求ABCD 的面积. AE : AD 1:2 △AOE 19. 广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为 A、B、C、D、E 五个 等级,并绘制了图 1、图 2 两个不完整的统计图,请根据图中的信息解答下列问题: (1)求九年级(1)班共有多少名同学? (2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数; (3)成绩为 A 类的 5 名同学中,有 2 名男生和 3 名女生;王老师想从这 5 名同学中任选 2 名同学进行交流, 请用列表法或画树状图的方法求选取的 2 名同学都是女生的概率. 20. 某网店正在热销一款电子产品,其成本为 10 元/件,销售中发现,该商品每天的销售量 y(件)与销售单 价 x(元/件)之间存在如图所示的关系: (1)请求出 y 与 x 之间的函数关系式; (2)该款电子产品的销售单价为多少元时,每天销售利润最大?最大利润是多少元; (3)由于武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出 300 元捐赠给武汉, 为了保证捐款后每天剩余利润不低于 450 元,如何确定该款电子产品的销售单价? 21. 如图,公路 MN 为东西走向,在点 M 北偏东 36.5°方向上,距离 5 千米处是学校 A;在点 M 北偏东 45° 方向上距离 千米处是学校 B.(参考数据: ,sin36.5  0.6 cos36.5  0.8,tan36.5  0.75 ). 6 2 (1)求学校 A,B 两点之间的距离 (2)要在公路 MN 旁修建一个体育馆 C,使得 A,B 两所学校到体育馆 C 的距离之和最短,求这个最短距 离. my  kx  b A(3,4), B(n,-1) 22. 如图所示,一次函数 y  的图象与反比例函数 的图象交于 .x(1)求反比例函数和一次函数的解析式; (2)在 x 轴上存在一点 C,使 为等腰三角形,求此时点C 的坐标; △AOC (3)根据图象直接写出使一次函数的值大于反比例函数的值的 x 的取值范围. BAC 23. 在中, ,OA 平分 交 BC 于点 O,以 O 为圆心,OC 长为半径作圆交 BC 于 RtABC ACB  90 点 D. O (1)如图 1,求证:AB 为 O 的切线; (2)如图 2,AB 与 相切于点 E,连接 CE 交 OA 于点 F. ①试判断线段 OA 与 CE 的关系,并说明理由. OF : FC 1: 2,OC  3 y  2x 10 ②若 ,求 tan B 的值. 如图,直线 分别与 x 轴,y 轴交于点 A,B 两点,点 C 为 OB 的中点,抛物线 y  x2  bx  c 24. 经过 A,C 两点. (1)求抛物线的函数表达式; 45 2(2)点 D 是直线 AB 下方的抛物线上的一点,且 的面积为 ,求点 D 的坐标; △ABD (3)点 P 为抛物线上一点,若△APB 是以 AB 为直角边的直角三角形,求点 P 到抛物线的对称轴的距 离. 本试卷的题干 0635

分享到 :
相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注