重庆市2018年中考数学真题试题 一、 1. 选择题 (本大题12个小题,每小题4分,共48分。) 2的相反数是 1212.2 .2D..ABCA【答案】 【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题 2.下列图形中一定是轴对称图形的是 A. B. C. D. 40° 平行四边形 四边形 直角三角形 矩形 【答案】D 【解析】A40°的直角三角形不是对称图形;B两个角是直角的四边形不一定是轴对称图 形;C平行四边形是中心对称图形不是轴对称图形;D矩形是轴对称图形,有两条对称轴 【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大 ,考生主要注意看清楚题目要求。 3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 D.企业新进员工 C.用企业人员名册,随机抽取三分之一的员工 【答案】C 【解析】A调查对象只涉及到男性员工;B调查对象只涉及到即将退休的员工;D调查对 象只涉及到新进员工 【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单 题。 4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6 个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的 个数为 A.12 B.14 C.16 D.18 【答案】C 【解析】 1∵第1个图案中的三角形个数为:2+2=2×2=4; 第2个图案中的三角形个数为:2+2+2=2×3=6; 第3个图案中的三角形个数为:2+2+2+2=2×4=8; …… ∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16; 【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律 ,从而计算出正确结果。比较简单。 5.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为 2.5cm ,则它的最长边为 A. 3cm 【答案】C B. 4cm C. 4.5cm D. 5cm 【解析】利用相似三角形三边对应成比例解出即可。 【点评】此题主要考查相似三角形的性质—— 相似三角形的三边对应成比例,该题属于中考当中的基础题。 6.下列命题正确的是 A.平行四边形的对角线互相垂直平分 C.菱形的对角线互相平分且相等 【答案】D B.矩形的对角线互相垂直平分 D.正方形的对角线互相垂直平分 【解析】 A.错误。平行四边形的对角线互相平分。 B.错误。矩形的对角线互相平分且相等。 C.错误。菱形的对角线互相垂直平分,不一定相等。 D.正确。正方形的对角线互相垂直平分。另外,正方形的对角线也相等。 【点评】此题主要考查四边形的对角线的性质,属于中考当中的简单题。 12 30 24 7.估计 的值应在 6A. 1和2之间 【答案】B 【解析】 B.2和3之间 C.3和4之间 D.4和5之间 16112 30 24 =2 30 24 =2 5 2 ,2 5= 45= 20 而,6620 2 5 2 在4到5之间,所以 在2到3之间 【点评】此题主要考查二次根式的混合运算及估算无理数的大小,属于中考当中的简 单题。 28.按如图所示的运算程序,能使输出的结果为12的是 A.x 3, y 3 B.x 4, y 2 C.x 2, y 4 D.x 4, y 2 【答案】 C【解析】由题可知,代入 x、yy值前需先判断 的正负,再进行运算方式选择。 选项 Ax、y代入 ,输出结果为 20 ,选项排除; 选项 y 0,故将 x2 2y ,输出结果为15,选项排除; 选项y 0,故将 Bx、yy 0,故将 x2 2y xyx2 2y 代入 C选项 y 0,故将 、代入 x2 2y ,输出结果为 20 ,选项 ,输 Dx、y代入 出结果为12,选项正确; 排除;最终答案为 选项。 Cy【点评】本题为代数计算题型,根据运算程序,先进行 的正负判断,选择对应运算 方式,进行运算即可,难度简单。 9.如图,已知AB是 O 的直径,点P在BA的延长线上,PD与 O 相切于点D,过点B作PD的 垂线交PD的延长线于点C,若 O 的半径为4, BC 6 ,则PA的长为 A.4 C.3 D.2.5 B. 2 3 【答案】A PO OH PA 4 PA 8 4【解析】作OH⊥PC于点H.易证△POH∽△PBC, ,,PA 4 PB BC 【点评】此题考查圆切线与相似的结合,属于基础题 6310.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学 楼底部E点处测得旗杆顶端的仰角 AED 58 ,升旗台底部到教学楼底部的距离 DE 7 ,升旗台坡面CD的坡度i 1:0.75 ,坡长CD 2 米,若旗杆底部到坡面CD的水平距离 BC 1米,则旗杆AB的高度约为 米(参考数据:sin58 0.85 ,cos58 0.53 ,tan58 1.6 C.14.7米 )A.12.6米 B.13.1米 D.16.3米 【答案】B 【解析】 AB HCM DE 延长 交地面与点 . 作 ⊥ . AH AH 11.2 7 tan58 1.6 CM 1.6. DM 1.2, 易得 ,HE AH 14.72, AB 14.72 1.6 13.1 【点评】此题考查三角函数的综合运用,解题关键是从图中提取相关信息,特别是直 角三角形的三边关系,属于中等题 ky 11.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数 (k 0 ,x45 x 0 )的图象上,横坐标分别为1,4,对角线 BD∥x 轴.若菱形ABCD的面积为 ,则k的 2值为 5415 4A. B. C.4 D.5 4【答案】D 【解析】设A(1,m),B(4,n),连接AC交BD于点O,BO=4-1=3,AO=m-n,所以 15 4545m n n k 4 5 ,有因为 m 4n ,所以 ,4【点评】此题考查k的几何意义与坐标,面积的综合运用,属于中挡题 x 1 1 x 12.若数 a使关于x的不等式组 有且只有四个整数解,且使关于y的方程 235x 2 x a y a y 1 1 y 2a a 2 的解为非负数,则符合条件的所有整数 的和为( ) A. 3 B. 2 C.1 D.2 【答案】C x 1 1 x x 5 【解析】 解不等式 得23a 2 x 5x 2 x a 4,由于不等式有四个整数解,根据题意 ,解得 。解分式方程 1 A点为 ,则 2 a 2 a 2 4a 2 40 a 2 a 1 y 2 a y a y 1 1 y 2a 2 得,又需排除分式方程无解的情况,故 且.结合不等 1,0,2 ,和为1. 2 a 2且a 1 式组的结果有a的取值范围为 故选C ,又a为整数,所以a的取值为 【点评】此题考查含参不等式和含参分式方程的应用,需要特别注意分式方程无解情 况的考虑,属于中档题 二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中 对应的横线上. 013.计算: ______________. 2 ( 3) 【答案】3 【解析】原式=2+1=3 【点评】此题考查有理数的基本运算,属于基础题 14.如图,在矩形ABCD中, AB 3 ,AD 2 ,以点A为圆心,AD长为半径画弧,交AB于点E 5,图中阴影部分的面积是___________(结果保留 ). CDBAE【答案】 6 90 【解析】 S阴 2 3 – 22 6 - 360 【点评】此题考查扇形、四边形面积的计算,及割补法的基本应用,属于基础题 15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节 期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 。人数/万人 25.4 24.9 23.4 22.4 21.9 O初五 日期 初二 初三初四 初一 【答案】 23.4万 【解析】 从图中看出,五天的游客数量从小到大依次为21.9, 22.4, 23.4, 24.9, 25.4,则中位数应为23.4万。 【点评】 本题考查了中位数的定义,难度较低。 16. 如图,把三角形纸片折叠,使点 B、点 C都与点 A重合,折痕分别为 DE ,FG ,得到 AGE 30,若 AE EG 2 3厘米,则ABC 的边 BC 的长为 厘米。 【答案】 6+4 3 【解析】 过 E作EH AG H于 。 6 AE EG 2 3,AGE 30. 3GA 2AH 2AE cos30 22 3 6. 2由翻折得 BE AE 2 3,GC GA 6. BC BE EG GC 6 4 3. 【点评】 本题考查了解直角三角形中的翻折问题,其中包括勾股定理的应用,难度中等。 17. A, B 两地相距的路程为240千米,甲、乙两车沿同一线路从 A B 地出发到 地,分别以一定 的速度匀速行驶,甲车先出发40分钟后,乙车才出发。途中乙车发生故障,修车耗时20分 钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同 时到达 B地。甲、乙两车相距的路程 y(千米)与甲车行驶时间 (小时)之间的关系如 x图所示,求乙车修好时,甲车距 B地还有 千米。 千米 y30 10 x小时 O2【答案】 90 40 2 h 【解析】 甲车先行40分钟( ),所行路程为30千米,因此甲车的速度为 60 3430 2452 10 V V 60km / h 45km / h。乙车的初始速度为 ,因此乙车故障 乙乙33后速度为 60-10 50km / h 。13t t 3 60t1 50t2 (t1 t2 )45 123 t2 2 7341t1 t2 45 (t1 t2 )45 240 33452 90km 7【点评】 本题考查了一次函数的实际应用,难度较高。 18. 为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮。其中,甲 种粗粮每袋装有3千克 A粗粮,1千克 CB A 粗粮,1千克 粗粮;乙种粗粮每袋装有1千克 A, B,C 粗粮,2千克 粗粮,2千克 BC粗粮。甲、乙两种袋装粗粮每袋成本价分别为袋中 三种粗粮的成本价之和。已知 利润率为30%,乙种粗粮的利润率为20%。若这两种袋装粗粮的销售利润率达到24%,则该电 商销售甲、乙两种袋装粗粮的数量之比是 A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元, 。商品的售价-商品的成本价 (商品的利润率= 100% )商品的成本价 【答案】 8:9 【解析】 用表格列出甲、乙两种粗粮的成分: 品种 甲乙类别 311122ABC58.5-甲总成本价 甲中 A总成本价为36=18元,根据甲的售价、利润率列出等式 0.3 甲总成本价 ,可知甲总成本为45元。 甲中 B与C总成本为 45-18 27 元。 BC乙中 与 总成本为 272 54 元。 乙总成本为54 16 60 元。 设甲销售 a袋,乙销售 b袋使总利润率为24%. (72-60)b (58.5 45)a 45a 60b 100% 24% 。13.5a 12b 10.8a 14.4b 2.7a 2.4b a :b 8:9 【点评】 本题考查了不定方程的应用,其中包括销售问题,难度较高。 三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算 过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的 位置上。 19. 如图,直线AB//CD,BC平分∠ABD,∠1=54°,求∠2的度数. 【答案】72° 【解析】∵ AB//CD,∠1=54° ∴ ∠ABC=∠1=54° ∵ BC平分∠ABD ∴ ∠DBC=∠ABC=54° 8∴ ∠ABD=∠ABC+∠DBC=54°+54°=108° ∵ ∠ABD+∠CDB=180° ∴ ∠CDB=180°-∠ABD=72° ∵ ∠2=∠CDB ∴ ∠2=72° 【点评】本题考查了平行线的性质,利用平行线性质以及角平分线性质求角度. 20. 某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下 两幅不完整的统计图,请结合图中相关数据解答下列问题: (1)请将条形统计图补全; 11(2)获得一等奖的同学中有 来自七年级,有 来自八年级,其他同学均来自九年级, 44现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状 图求所选出的两人中既有七年级又有九年级同学的概率. 1【答案】(1)如下图;(2) 39【解析】(1)10 25% 40 (人) 获一等奖人数: 40 8 6 12 10 4(人) 1(2)七年级获一等奖人数: 4 1(人) 41八年级获一等奖人数: 4 1(人) 4∴ 九年级获一等奖人数: 4 11 2(人) 七年级获一等奖的同学人数用M表示,八年级获一等奖的同学人数用N表示, 九年级获一等奖的同学人数用P1 、P2表示,树状图如下: 共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种 ,413则所选出的两人中既有七年级又有九年级同学的概率P= 12 .【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树 状图法是解题关键,难度中等. 四、解答题(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过 程或推理步骤,画出必要的图形,(包括辅助线),请将解答过程书写在答题卡中对应的 位置上。 21、计算: (1) aa 2b a ba b 【答案】 2ab b2 【解析】 解: 原式=a2 2ab a2 b2 10 =2ab b2 x 2 x 3 x2 4x 4 x 3 (2) x 2 x 2 x 2 【答案】 x 2 x 2x 3 x 3 【解析】 解: 原式= x 3 x2 4 x 4 x 2x 2 x 3 x 3 2==x 2 x 2 x 2 【点评】本题考查了整式的乘除以及分式的化简运算。 22. 且与 y 轴交于点 B,把点 A如图,在平面直角坐标系中,直线 y x 3 过点 A(5, m) 平行的直线交 y轴 向左平移2个单位,再向上平移4个单位,得到点C.过点C且与 y 2x 于点 D . (1)求直线CD的解析式; (2)直线 AB与CD交于点 E,将直线CD沿 EB方向平移,平移到经过点 B的位置结束 ,求直线CD在平移过程中与 x轴交点的横坐标的取值范围. 3【答案】(1) y 2x 4 (2) x 2 2【解析】解:(1)由题意可得, 点在直线 上A(5, m) y x 3 m532 即A(5,2) 点 A向左平移2个单位,又向上平移4个单位得到点C 又C(3,2) 直线CD与 y 2x 平行 11 设直线CD的解析式为 y 2x 3 直线CD过点 C(3,2) 又直线CD的解析式为 y 2x 4 (2)将 x0代入 y x 3 中,得 y 3,即 B 0,3 故平移之后的直线 BF的解析式为 y 2x 3 33令将y 0,得 x ,即 F ( ,0) 22中,得 x2,即 y 0代入 y 2x 4 G(2,0) 3CD平移过程中与 x轴交点的取值范围是: x 2 2【点评】本题主要考察求解一次函数的解析式以及图像移动过程中自变量的取值范围,题 型比较简单。 23. 在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造。 (1) 原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化 的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化和里 程数至少是多少千米? (2) 到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程 数正好是原计划的最小值。2017年通过政府投入780万元进行村级道路硬化和道路拓 宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1 2,且里程数之比为2 ::1,为加快美丽乡村建设,政府决定加大投入。经测算:从今年6月起至年底,如果 政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽 ,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么 道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的 值。 【答案】(1)40千米;(2)10。 【解析】解: (1) 设道路硬化的里程数至少是x千米。 则由题意得: x≥4(50-x) 解不等式得: 12 x≥40 答:道路硬化的里程数至少是40千米。 (2) 由题意得: 2017年:道路硬化经费为:13万/千米,里程为:30km 道路拓宽经费为:20万/千米,里程为:15km ∴今年6月起: 道路硬化经费为:13(1+a%)万/千米,里程数:40(1+5a%)km 道路拓宽经费为:26(1+5a%)万/千米,里程数:10(1+8a%)km 又∵政府投入费用为:780(1+10a%)万元 ∴列方程: 13(1+a%)×40(1+5a%)+26(1+5a%)×10(1+8a%)=780(1+10a%) 令a%=t,方程可整理为: 13(1+t)×40(1+5t)+26(1+5t)×10(1+8t)=780(1+10t) 520(1+t)(1+5t)+260(1+5t)(1+8t)=780(1+10t) 化简得: 2(1+t)(1+5t)+(1+5t)(1+8t)=3 (1+10t) 10 -t=0 t(10t-1)=0 ∴(舍去) ∴综上所述: a = 10 答:a的值为10。 【点评】 本题考察一元二次不等式的应用,一元二次方程的应用。求出本题的关键是将道路硬 化,道路拓宽的里程数及每千米需要的经费求出。 (1) 利用“道路硬化的里程数是道路拓宽里程数的4倍”列出不等式求解。 (2) 根据2017年道路硬化和道路拓宽的里程数及每千米经费,表示出6月起道路硬化及 道路拓宽的里程数及每千米经费。表示出总费用列方程求解。 24.如图,在平行四边形 中,点 是对角线 的中点,点 是上一点,且 ,连接 并延长交 于点,过点 作的垂线,垂足为 ,交 于点. (1)若 ,,求 的面积; (2)若 ,求证: .【解析】解: 13 (1) 又 在 中(2) (8字图) 14 15 25、对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为 9,则称n为“极数”. (1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由; (2) 如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数 ”,记D(m)= .求满足D(m)是完全平方数的所有m. 【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425. 【解析】解: 1 猜想任意一个“ 极数” 是99的倍数。理由如下: 设任意一个“ 极数” 为xy 9 x 9 y 其中1 x 9,0 x 9,且x, y为整数 xy 9 x 9 y =1000x+100y+10 9 x + 9 y =1000x 100y 90 10x 9 y 990x 99y 99 99(10x y 1) x, y为整数,则10x y 1为整数,则任意一个“ 极数” 是99的倍数. 2 设 m xy 9 x 9 y 1 x 9, 0 x 9且 x, y为 整 数 99 10x y 1 则 由 题 意 可 知 D m 3 10x y 1 33 1 x 9, 0 y 9 33 3 10x y 1 300 又 D m 为 完 全 平 方 数 且 为 3的 倍 数 D m 可 取 36, 81,144, 225. 16 ① D m 36 时,3 10x y 1 36 10x y 112 x 1, y 1,m 1188 ② D m 81 时,3 10x y 1 81 10x y 1 27 x 2, y 6,m 2673 ③ D m =144 时,3 10x y 1 144 10x y 1 48 x 4, y 7,m 4752 ④ D m =225 时,3 10x y 1 225 10x y 1 75 x 7, y 4,m 7425 综上所述,满足D m 为完全平方数的m的值为1188,2673, 4752, 7425. 【点评】:本题考查数值问题,包括:题目翻译,数位设法,数位整除,完全平方数特征 ,分类讨论。 【易错点】:易忽略数值上取值范围及所得关系式自身特征;难度一般。 226. 如图,在平面直角坐标系中,点 A在抛物线 y – x 4x 上,且横坐标为1,点 B与点A关于抛物线的对称轴对称,直线 AB 与y轴交于点 ,点 为抛物线的顶点,点 CDE( 1 ,1 ) 的坐标为 (1)求线段 AB 的长; (2)点 P为线段 AB 上方抛物线上的任意一点,过点 P作AB 的垂线交 AB 于点 H,点 1F为y轴上一点,当△PBE 的面积最大时,求 PH HF FO 的最小值; 21PH HF FO C(3)在(2)中, 取得最小值时,将△CFH 绕点 顺时针旋转 60 后2得到△CF’H’,过点 F’ 作CF’的垂线与直线 AB 交于点 Q,点 R为抛物线对称轴上的一 点,在平面直角坐标系中是否存在点 S,使得点 D,Q, R, S 为顶点的四边形为菱形,若存 在,请直接写出点 S的坐标,若不存在,请说明理由。 17 【答案】(1) AB 2 13494PH HF FO 3 (2) (3) =2S1 (-1,3+ 10 ); S2 (-1,3- 10 ); S3 (5,3); S4 (-1,8) 【解析】解:(1)由题意得 A(1,3) (1,1) B(3,3) D(2,4) C(0,3) E则AB 2 延长 PH ,交 BE于点 N(2) B (3,3), 直线 BE 的解析式为:y x E(1,1) 设P(m,- m2 4m ),1<m<3 ,则 N(m,m) 分析可得,当 PN 取最大值时, PN -m2 4m m S△PBE 取最大值 394 -(m )2 23当m ,PN取最大值 23215 , ), 432∴P(H(, ) 318 y构造与 轴夹角为 30 的直线OM,如图所示 M则OM : y 3x ,即 1MF FO 3x y 0 ,21PH HF FO PH HF MF 2当HM OM 时, (PH HF MF)MIN PH HM 33 3 34322HM 3 21PH HF FO PH HM 234343234943 3 (3)∵OM的解析式为 y 3x ,HM⊥OM,且HM过点H 33y x 3 ∴HM的解析式为: 323∴F(0,3- )2又∵ C(0,3) 3CF 219 3在RT△CQF’ 中, CF ‘ CF ,QCF ‘ 300 22CQ CF’1 3Q (-1,3) ①以 DQ 为边,此时 1 (-1,3- 10 ); 2 (5,3); S3 (-1,3+ 10 ); SS②以 DQ 为对角线, 此时 4 (-1,8) SS4 DQR3 【点评】此次二次函数的压轴题与前几年的中考题的考查基本类似. 第(1)问与16、17年的中考第一问略有区别,之前考查的是求一次函数的解析式或者求 点的坐标,今年考查的是求线段的长度,虽然题目的问法有所改变,但是题目的难度却降低了 第(2)问的考查从15年开始基本上就没有变化,考查的都是双最值的问题.前半部分求 面积的最大值要把它转化成求线段的最大值.后半部分为三条线段和最小问题,相对前两年 考查方向一致,不过,其中一条线段的长度前面带有系数.求解过程中,若可以想到利用点到 直线的距离公式求线段长,则计算会简化很多. 第(3)问持续考查特殊图形的存在性问题(今年考查菱形的存在性问题),学生要学会从 已知的线段为边或对角线两种情况进行讨论. 整体来说成绩较好的学生本题可以拿到8-10分. 20
声明:如果本站提供的资源有问题或者不能下载,请点击页面底部的"联系我们";
本站提供的资源大部分来自网络收集整理,如果侵犯了您的版权,请联系我们删除。