湖南省衡阳市2018年中考数学真题试题 一、选择题(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.-4的相反数是( A.4 )1414B.-4 C. D. 2.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程 ,数1800000000用科学记数法表示为( )A.18108 B.1.8108 C.1.8109 D. 0.181010 3.下列生态环保标志中,是中心对称图形的是( )A. B. C. D. 4.如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是( )A. B. C. D. 15.已知抛一枚均匀硬币正面朝上的概率为 ,下列说法错误的是( 2)A.连续抛一枚均匀硬币2次必有1次正面朝上 B.连续抛一枚均匀硬币10次都可能正面朝上 C.大量反复抛一枚均匀硬币,平均每100次有50次正面朝上 D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的 6.下列各式中正确的是( A. 9 3 )B. (3)2 3 C. 3 9 3 D. 112 3 3 7.下面运算结果为 a6 的是( )A. a3 a3 B. a8 a2 C. a2 a3 D. (a2 )3 8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求, 现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千 克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为 万千克,根据题意,列方程为( x)30 36 30 30 36 30 A. 10 B. 10 C. 10 D. x1.5x x1.5x 1.5x x30 36 10 x1.5x 9.下列命题是假命题的是( A.正五边形的内角和为540 )B.矩形的对角线相等 D.圆内接四边形的对角互补 C.对角线互相垂直的四边形是菱形 x 1 0 10.不等式组 的解集在数轴上表示正确的是( )2x 6 0 A. B. C. D. 211.对于反比例函数 y ,下列说法不正确的是( )xA.图象分布在第二、四象限 B.当 x 0 时, C.图象经过点 (1,2) D.若点 A(x1, y1) B(x2 , y2 )都在图象上,且 x1 x2 ,则 y1 y2 12.如图,抛物线 y ax2 bx c 轴交于点 A(1,0) ,顶点坐标 (1,n) ,与 y 轴的交点 y 随 x 的增大而增大 ,与x在(0,2) ,(0,3)之间(包含端点),则下列结论: 2①3a b 0 ;② 1 a ;③对于任意实数 m , a b am2 bm总成立;④关于 3x的方程 ax2 bx c n 1有两个不相等的实数根.其中结论正确的个数为( )2A.1个 B.2个 C.3个 D.4个 二、填空题(本大题共6个小题,每小题3分,满分18分.) 13.如图,点 A、B、C、D、O都在方格纸的格点上,若 COD 是由 AOB 绕点 O 按 顺时针方向旋转而得到的,则旋转的角度为 .14.某公司有10名工作人员,他们的月工资情况如下表,根据表中信息,该公司工作人员的 月工资的众数是 .职务 经理 副经理 2类职员 1A类职员 2B类职员 4C人数 12月工资/(万元/人) 1.2 0.8 0.6 0.4 x2 115.计算: .x 1 x 1 16.将一副三角板如图放置,使点 A 落在 DE 上,若 BC / /DE ,则 AEC 的度数为 .17.如图,ABCD 的对角线相交于点 O,且 AD CD ,过点 O作OM AC ,交 AD 于点 M.如果 CDM 的周长为8,那么ABCD 的周长是 .3118.如图,在平面直角坐标系中,函数 y x 和y x的图象分别为直线l1 ,l2 ,过点 3 作 2018 的横 21A (1, ) 作x轴的垂线交 l1 于点 A2 ,过点 A2 作 y轴的垂线交 l2 于点 A3 ,过点 Ax轴12的垂线交 坐标为 l1 于点 4 ,过点 AA4 作 y轴的垂线交 l2 于点 A5 ,…依次进行下去,则点 A.三、解答题(本大题共8小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分 ,满分66分.解答应写出文字说明、证明过程或演算步骤.) 19.先化简,再求值: (x 2)(x 2) x(1 x) ,其中 x 1 .20.如图,已知线段 AC ,BD 相交于点 E,AE DE ,BE CE .(1)求证: ABE DCE ;4(2)当 AB 5时,求CD 的长. 21.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后 有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分 布直方图. 请根据图中信息完成下列各题: (1)将频数分布直方图补充完整; (2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少? (3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求 小明与小强同时被选中的概率. 22.一名徒步爱好者来衡阳旅行,他从宾馆 鼓书院 处,参观后又从 处沿正南方向行走一段距离,到达位于宾馆南偏东 45 方向的 雁峰公园 处,如图所示. C出发,沿北偏东30 的方向行走2000米到达石 AAB(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离; (2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到 达宾馆? 523.如图, O 是 ABC 的外接圆, AB 为直径, BAC 的平分线交 O 于点 D ,过点 D作DE AC 分别交 AC 、AB 的延长线于点 E、F.(1)求证: EF 是 O 的切线; (2)若 AC 4 ,CE 2,求 BD 的长度.(结果保留 )24.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件 ,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查 发现,该产品每天的销售量 y (件)与销售价 x (元/件)之间的函数关系如图所示. (1)求 (2)求每天的销售利润 售价为多少元时,每天的销售利润最大?最大利润是多少? y与x之间的函数关系式,并写出自变量 x 的取值范围; W(元)与销售价 (元/件)之间的函数关系式.并求出每件销 x25.如图,已知直线 y 2x 4分别交 ,点 是线段 AB 上一动点,过点 x轴、 y轴于点 AC、B,抛物线经过 A , B 两点 PP作PC x 轴于点 ,交抛物线于点 D . 6(1)若抛物线的解析式为 y 2×2 2x 4,设其顶点为 M ,其对称轴交 AB 于点 N . ①求点 M、N的坐标;②是否存在点 P,使四边形 MNPD 为菱形?并说明理由; (2)当点 P的横坐标为1时,是否存在这样的抛物线,使得以 B 、 P 、 D 为顶点的三角 形与 AOB 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由. 26.如图,在 RtABC 中, C 90 AC BC 4cm,动点 P 从点C 出发以1cm / s ,的速度沿CA 匀速运动,同时动点 Q 从点 A 出发以 2cm / s 的速度沿 AB 匀速运动,当点 P到达点 时,点 同时停止运动.设运动时间为t(s) . AP、Q(1)当 (2)是否存在某一时刻 若不存在,请说明理由; (3)以 PC 为边,往CB 方向作正方形CPMN ,设四边形QNCP 的面积为 的函数关系式. t为何值时,点 B在线段 PQ 的垂直平分线上? t,使 APQ 是以 PQ 为腰的等腰三角形?若存在,求出 t 的值; S,求 S 关于 t78910 11 12 13 14
声明:如果本站提供的资源有问题或者不能下载,请点击页面底部的"联系我们";
本站提供的资源大部分来自网络收集整理,如果侵犯了您的版权,请联系我们删除。