2017年辽宁省营口市中考数学试卷 一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分. )1.(3分)﹣5的相反数是( ) A.﹣5 B.±5 C. D.5 2.(3分)下列几何体中,同一个几何体的三视图完全相同的是( ) A.球 B.圆锥 C.圆柱 D.三棱柱 3.(3分)下列计算正确的是( ) A.(﹣2xy)2=﹣4x2y2 B.x6÷x3=x2 D.2x+3x=5x C.(x﹣y)2=x2﹣y2 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水 量,结果如下表: 月用水量/m3 465769859210 1户数 则这30户家庭的月用水量的众数和中位数分别是( ) A.6,6 B.9,6 C.9,6 D.6,7 5.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一 定成立的是( ) A.a+b<0 B.a﹣b>0 C.ab>0 D. <0 6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角 顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则 ∠1的度数是( ) 第1页(共43页) A.75° B.85° C.60° D.65° 7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜 边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是( ) A.∠ECD=112.5° C.∠DEC=30° B.DE平分∠FDC D.AB= CD 8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y= 的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例 函数解析式为( ) A.y=﹣ B.y=﹣ C.y=﹣ D.y= 9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1 ,点P是AB上的动点,则PC+PD的最小值为( ) 第2页(共43页) A.4 B.5 C.6 D.7 10.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两 点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度 的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4 ),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CD E和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是( )A. C. B. D. 二、填空题(每小题3分,共24分,将答案填在答题纸上) 第3页(共43页) 11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速 ,预计到2018年我国移动医疗市场规模将达到29150000000元,将291500000 00用科学记数法表示为 . 12.(3分)函数y= 中,自变量x的取值范围是 . 13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色 外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色 、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是 个. 14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数 根,则k的取值范围是 . 15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位 置,AB=2,AD=4,则阴影部分的面积为 . 16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原 计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意 可列方程为 . 17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE 折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为 .18.(3分)如图,点A1(1, )在直线l1:y= x上,过点A1作A1B1⊥l1交直 第4页(共43页) 线l2:y= x于点B1,以A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点 C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作 等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形AnBnCn的面积 为 .(用含n的代数式表示) 三、解答题(19小题10分,20小题10分,共20分.) 19.(10分)先化简,再求值:( )÷(1﹣ ( )﹣1﹣(2017﹣ )0,y= sin60°. ﹣),其中x= 20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有 四个不同的几何图形,将这四张纸牌背面朝上洗匀. (1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率; (2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不 放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是 第5页(共43页) 轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树 状图)说明理由(纸牌用A、B、C、D表示). 四、解答题(21题12分,22小题12分,共24分) 21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该 校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2 两幅尚不完整的统计图,请根据图中的信息,解答下列问题: (1)这四个班参与大赛的学生共 人; (2)请你补全两幅统计图; (3)求图1中甲班所对应的扇形圆心角的度数; (4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中 参与这次活动的大约有多少人. 第6页(共43页) 22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点 A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船 的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最 近距离.(结果精确到0.1海里,参考数据 ≈1.41, ≈1.73) 第7页(共43页) 五、解答题(23小题12分,24小题12分,共24分) 23.(12分)如图,点E在以AB为直径的⊙O上,点C是 的中点,过点C作CD 垂直于AE,交AE的延长线于点D,连接BE交AC于点F. (1)求证:CD是⊙O的切线; (2)若cos∠CAD= ,BF=15,求AC的长. 24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10 天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第 一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器 损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的 所有空调,平均每台成本就增加20元. (1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x 的取值范围. (2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每 台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂 哪一天获得的利润最大,最大利润是多少. 第8页(共43页) 六、解答题(本题满分14分) 25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点 ,且EF⊥AB. (1)若四边形ABCD为正方形. ①如图1,请直接写出AE与DF的数量关系 ; ②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数 量关系并说明理由; (2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点 B顺时针旋转α(0°<α<90°)得到△E’BF’,连接AE’,DF’,请在图3中画出草 图,并直接写出AE’与DF’的数量关系. 第9页(共43页) 七、解答题(本题满分14分) 26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两 点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点, 过点P作PD⊥x轴于点D,交直线BC于点E. (1)求抛物线解析式; (2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积; (3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点 ,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形 ?若存在,直接写出点N的坐标;若不存在,请说明理由. 【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】 第10页(共43页) 2017年辽宁省营口市中考数学试卷 参考答案与试题解析 一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分. )1.(3分)﹣5的相反数是( ) A.﹣5 B.±5 C. D.5 【考点】14:相反数.菁优网版权所有 【分析】根据相反数的定义直接求得结果. 【解答】解:﹣5的相反数是5. 故选:D. 【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0 的相反数是0. 2.(3分)下列几何体中,同一个几何体的三视图完全相同的是( ) A.球 B.圆锥 C.圆柱 D.三棱柱 【考点】U1:简单几何体的三视图.菁优网版权所有 【分析】分别写出各个立体图形的三视图,判断即可. 【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确 B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误; C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误; D、三棱柱的主视图、左视图是三角形、俯视图三角形,但大小不一定相同, 故本选项正确. 故选:A. 第11页(共43页) 【点评】本题考查了简单几何体的三视图,掌握主视图、左视图、俯视图是分 别从物体正面、左面和上面看,所得到的图形是解题的关键. 3.(3分)下列计算正确的是( ) A.(﹣2xy)2=﹣4x2y2 C.(x﹣y)2=x2﹣y2 B.x6÷x3=x2 D.2x+3x=5x 【考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;4 C:完全平方公式.菁优网版权所有 【分析】根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算 法则分别进行计算即可得出答案. 【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误; B、x6÷x3=x3,故本选项错误; C、(x﹣y)2=x2﹣2xy+y2,故本选项错误; D、2x+3x=5x,故本选项正确; 故选:D. 【点评】此题考查了同底数幂的除法、积的乘方、完全平方公式和合并同类项 ,熟练掌握运算法则是解题的关键,是一道基础题. 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水 量,结果如下表: 月用水量/m3 465769859210 1户数 则这30户家庭的月用水量的众数和中位数分别是( ) A.6,6 B.9,6 C.9,6 D.6,7 【考点】W4:中位数;W5:众数.菁优网版权所有 第12页(共43页) 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或 两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意 众数可以不止一个. 【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数, 在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6 ,众数是6. 故选:A. 【点评】本题主要考查了众数和中位数的知识,一组数据中出现次数最多的数 据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的 平均数)叫做中位数. 5.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一 定成立的是( ) A.a+b<0 B.a﹣b>0 C.ab>0 D. <0 【考点】F7:一次函数图象与系数的关系.菁优网版权所有 【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a< 0,b>0,然后一一判断各选项即可解决问题. 【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限, ∴a<0,b>0, ∴a+b不一定大于0,故A错误, a﹣b<0,故B错误, ab<0,故C错误, <0,故D正确. 故选:D. 第13页(共43页) 【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数 图象的位置,确定a、b的符号,属于中考常考题型. 6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角 顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则 ∠1的度数是( ) A.75° B.85° C.60° D.65° 【考点】JA:平行线的性质.菁优网版权所有 【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计 算即可. 【解答】解:如图所示,∵DE∥BC, ∴∠2=∠3=115°, 又∵∠3是△ABC的外角, ∴∠1=∠3﹣∠A=115°﹣30°=85°, 故选:B. 【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注 意:两直线平行,同位角相等. 7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜 边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是( ) 第14页(共43页) A.∠ECD=112.5° C.∠DEC=30° B.DE平分∠FDC D.AB= CD 【考点】KH:等腰三角形的性质;KX:三角形中位线定理.菁优网版权所有 【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B= ∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定 理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD= 112.5°,从而判断A正确; 根据三角形的中位线定理得到FE= AB,FE∥AB,根据平行线的性质得出∠EFC= ∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性 质得到FD= AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE= ∠FED=22.5°,进而判断B正确; 由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C 错误; 在等腰Rt△ADC中利用勾股定理求出AC= CD,又AB=AC,等量代换得到AB= CD,从而判断D正确. 【解答】解:∵AB=AC,∠CAB=45°, ∴∠B=∠ACB=67.5°. ∵Rt△ADC中,∠CAD=45°,∠ADC=90°, ∴∠ACD=45°,AD=DC, ∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意; ∵E、F分别是BC、AC的中点, 第15页(共43页) ∴FE= AB,FE∥AB, ∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°. ∵F是AC的中点,∠ADC=90°,AD=DC, ∴FD= AC,DF⊥AC,∠FDC=45°, ∵AB=AC, ∴FE=FD, ∴∠FDE=∠FED= (180°﹣∠EFD)= (180°﹣135°)=22.5°, ∴∠FDE= ∠FDC, ∴DE平分∠FDC,故B正确,不符合题意; ∵∠FEC=∠B=67.5°,∠FED=22.5°, ∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意; ∵Rt△ADC中,∠ADC=90°,AD=DC, ∴AC= CD, ∵AB=AC, ∴AB= CD,故D正确,不符合题意. 故选:C. 【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三 角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于 第三边,并且等于第三边的一半是解题的关键. 8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y= 的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例 函数解析式为( ) 第16页(共43页) A.y=﹣ B.y=﹣ C.y=﹣ D.y= 【考点】G6:反比例函数图象上点的坐标特征;L8:菱形的性质;Q3:坐标与 图形变化﹣平移.菁优网版权所有 【分析】过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数 分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点 的坐标特征得到方程组求解即可. 【解答】解:过点C作CD⊥x轴于D, 设菱形的边长为a, 在Rt△CDO中,OD=a•cos60°= a,CD=a•sin60°= a, 则C(﹣ a, a), 点A向下平移2个单位的点为(﹣ a﹣a, a﹣2),即(﹣ a, a﹣2), 则,解得 .故反比例函数解析式为y=﹣ 故选:A. .第17页(共43页) 【点评】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法 、坐标与图形性质、菱形的性质、平移的性质等知识;本题综合性强,有一 定难度. 9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1 ,点P是AB上的动点,则PC+PD的最小值为( ) A.4 B.5 C.6 D.7 【考点】KW:等腰直角三角形;PA:轴对称﹣最短路线问题.菁优网版权所有 【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连 接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接B C′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股 定理即可得到结论. 【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P ,连接CP. 此时DP+CP=DP+PC′=DC′的值最小. ∵BD=3,DC=1 ∴BC=4, 第18页(共43页) ∴BD=3, 连接BC′,由对称性可知∠C′BA=∠CBA=45°, ∴∠CBC′=90°, ∴BC′⊥BC,∠BCC′=∠BC′C=45°, ∴BC=BC′=4, 根据勾股定理可得DC′= 故选:B. ==5. 【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键. 10.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两 点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度 的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4 ),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CD E和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是( )第19页(共43页) A. B. D. C. 【考点】E7:动点问题的函数图象.菁优网版权所有 【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可判断. 【解答】解:当0<t≤2时,S= t2, 当2<t≤4时,S= t2﹣ (2t﹣4)2=﹣ t2+8t﹣8, 观察图象可知,S与t之间的函数关系的图象大致是C. 故选:C. 【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想 思考问题,属于中考常考题型. 二、填空题(每小题3分,共24分,将答案填在答题纸上) 11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速 ,预计到2018年我国移动医疗市场规模将达到29150000000元,将291500000 00用科学记数法表示为 2.915×1010 . 【考点】1I:科学记数法—表示较大的数.菁优网版权所有 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数. 第20页(共43页) 确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小 数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值 小于1时,n是负数. 【解答】解:29150000000=2.915×1010. 故答案为:2.915×1010. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的 形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值 .12.(3分)函数y= 中,自变量x的取值范围是 x≥1 . 【考点】E4:函数自变量的取值范围.菁优网版权所有 【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x﹣1 ≥0;分母不等于0,可知:x+1≠0,所以自变量x的取值范围就可以求出. 【解答】解:根据题意得:x﹣1≥0且x+1≠0, 解得:x≥1. 故答案为:x≥1. 【点评】考查使得分式和二次根式有意义的知识.函数自变量的范围一般从三 个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分 式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方 数为非负数. 13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色 外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色 、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是 第21页(共43页) 15 个. 【考点】X8:利用频率估计概率.菁优网版权所有 【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则 摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数. 【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%, 所以摸到蓝球的概率为75%, 因为20×75%=15(个), 所以可估计袋中蓝色球的个数为15个. 故答案为15. 【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在 某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定 理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的 概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确 .14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数 根,则k的取值范围是 k> 且k≠1 . 【考点】A1:一元二次方程的定义;AA:根的判别式.菁优网版权所有 【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可. 【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0, 解得:k> 且k≠1. 故答案为:k> 且k≠1. 【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac 第22页(共43页) :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数 根;当△<0,方程没有实数根. 15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位 置,AB=2,AD=4,则阴影部分的面积为 π﹣2 . 【考点】MO:扇形面积的计算;R2:旋转的性质.菁优网版权所有 【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2 ,分别求出 扇形CEB′和三角形CDE的面积,即可求出答案. 【解答】解:∵四边形ABCD是矩形, ∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°, ∴CE=BC=4, ∴CE=2CD, ∴∠DEC=30°, ∴∠DCE=60°, 由勾股定理得:DE=2 ∴阴影部分的面积是S=S扇形CEB′﹣S△CDE 故答案为: ,=﹣ ×2×2 =,.【点评】本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此 题的关键是能正确求出扇形CEB′和三角形CDE的面积,题目比较好,难度适 中. 16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原 计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意 第23页(共43页) 可列方程为 ﹣=8 . 【考点】B6:由实际问题抽象出分式方程.菁优网版权所有 【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计 划所用时间﹣实际所用时间=8”列方程即可. 【解答】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x, 根据题意可得: 故答案为: ﹣=8, =8. ﹣【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴 含的相等关系. 17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE 折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为 3或6 . 【考点】LB:矩形的性质;PB:翻折变换(折叠问题).菁优网版权所有 【分析】由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC为直角三角形分两 种情况:①当∠EFC=90°时,可得出AE平分∠BAC,根据角平分线的性质即可 得出 =,解之即可得出BE的长度;②当∠FEC=90°时,可得出四边形A BEF为正方形,根据正方形的性质即可得出BE的长度. 【解答】解:∵AD=8,AB=6,四边形ABCD为矩形, ∴BC=AD=8,∠B=90°, ∴AC= =10. △EFC为直角三角形分两种情况: ①当∠EFC=90°时,如图1所示. ∵∠AFE=∠B=90°,∠EFC=90°, 第24页(共43页) ∴点F在对角线AC上, ∴AE平分∠BAC, ∴=,即 =,∴BE=3; ②当∠FEC=90°时,如图2所示. ∵∠FEC=90°, ∴∠FEB=90°, ∴∠AEF=∠BEA=45°, ∴四边形ABEF为正方形, ∴BE=AB=6. 综上所述:BE的长为3或6. 故答案为:3或6. 【点评】本题考查了翻折变换、矩形的性质、角平分线的性质、正方形的判定 与性质以及勾股定理,分∠EFC=90°和∠FEC=90°两种情况寻找BE的长度是解 题的关键. 18.(3分)如图,点A1(1, )在直线l1:y= x上,过点A1作A1B1⊥l1交直 线l2:y= x于点B1,以A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点 C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作 第25页(共43页) 等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形AnBnCn的面积 为 .(用含n的代数式表示) 【考点】F8:一次函数图象上点的坐标特征;KK:等边三角形的性质.菁优网版权所有 【专题】2A:规律型. 【分析】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角 形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2 =3,通过解直角三角形可得出A2B2的长度,同理可求出AnBn的长度,再根据 等边三角形的面积公式即可求出第n个等边三角形AnBnCn的面积. 【解答】解:∵点A1(1, ), ∴OA1=2. ∵直线l1:y= x,直线l2:y= x, ∴∠A1OB1=30°. 在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°, ∴A1B1= OB1, ∴A1B1= .∵△A1B1C1为等边三角形, ∴A1A2= A1B1=1, ∴OA2=3,A2B2= .同理,可得出:A3B3= ,A4B4= ,…,AnBn= ,第26页(共43页) 2∴第n个等边三角形AnBnCn的面积为 × AnBn = .故答案为: .【点评】本题考查了一次函数图象上点的坐标特征、解直角三角形以及等边三 角形的性质,通过解直角三角形及等边三角形的性质,找出AnBn= 是解题的关键. 三、解答题(19小题10分,20小题10分,共20分.) 19.(10分)先化简,再求值:( ﹣)÷(1﹣ ),其中x= ( )﹣1﹣(2017﹣ )0,y= sin60°. 【考点】6D:分式的化简求值;6E:零指数幂;6F:负整数指数幂;T5:特殊 角的三角函数值.菁优网版权所有 【分析】先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入 即可得. 【解答】解:原式=[ ﹣]÷ =•=﹣ ,第27页(共43页) 当x=( )﹣1﹣(2017﹣ )0=3﹣1=2,y= sin60°= 原式=﹣ =﹣4. ×= 时, 【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则 是解题的关键. 20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有 四个不同的几何图形,将这四张纸牌背面朝上洗匀. (1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率; (2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不 放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是 轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树 状图)说明理由(纸牌用A、B、C、D表示). 【考点】P3:轴对称图形;R5:中心对称图形;X4:概率公式;X6:列表法与 树状图法;X7:游戏公平性.菁优网版权所有 【分析】(1)首先根据题意结合概率公式可得答案; (2)首先根据已知列表,求得摸出两张牌面图形的形状,继而求得小明赢与小 亮赢的概率,比较概率的大小,即可知这个游戏是否公平. 【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正 面是中心对称图形的纸牌的概率是 ; 第28页(共43页) (2)列表得: ABCDA(A,B) (A,C) (B,C) (A,D) (B,D) (C,D) BCD(B,A) (C,A) (D,A) (C,B) (D,B) (D,C) 共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的 有6种, ∴P(两张都是轴对称图形)= ,因此这个游戏公平. 【点评】本题考查的是游戏公平性的判断,以及概率.判断游戏公平性就要计 算每个事件的概率,概率相等就公平,否则就不公平. 四、解答题(21题12分,22小题12分,共24分) 21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该 校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2 两幅尚不完整的统计图,请根据图中的信息,解答下列问题: (1)这四个班参与大赛的学生共 100 人; (2)请你补全两幅统计图; (3)求图1中甲班所对应的扇形圆心角的度数; (4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中 参与这次活动的大约有多少人. 第29页(共43页) 【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.菁优网版权所有 【分析】(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数; (2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整 体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人 数,即可得出丙班参赛得人数,从而补全统计图; (3)根据甲班级所占的百分比,再乘以360°,即可得出答案; (4)根据样本估计总体,可得答案. 【解答】解:(1)这四个班参与大赛的学生数是: 30÷30%=100(人); 故答案为100; (2)丁所占的百分比是: ×100%=35%, 丙所占的百分比是:1﹣30%﹣20%﹣35%=15%, 则丙班的人数是:100×15%=15(人); 如图: 第30页(共43页) (3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°; (4)根据题意得:2000× =1250(人). 答:全校的学生中参与这次活动的大约有1250人. 【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从 不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表 示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点 A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船 的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最 近距离.(结果精确到0.1海里,参考数据 ≈1.41, ≈1.73) 第31页(共43页) 【考点】KU:勾股定理的应用;TB:解直角三角形的应用﹣方向角问题.菁优网版权所有 【分析】过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行 过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、 AD的长度,进而可求出CE的长度. 【解答】解:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D, 由题意可知:船在航行过程中与码头C的最近距离是CE, AB=30× =20, ∵∠NAC=45°,∠NAB=75°, ∴∠DAB=30°, ∴BD= AB=10, 由勾股定理可知:AD=10 ∵BC∥AN, ∴∠BCD=45°, ∴CD=BD=10, ∴AC=10 +10 ∵∠DAB=30°, ∴CE= AC=5+5≈13.7 答:船在航行过程中与码头C的最近距离是13.7海里 【点评】本题考查解三角形的应用,解题的关键是熟练运用锐角三角函数以及 第32页(共43页) 勾股定理,本题属于中等题型. 五、解答题(23小题12分,24小题12分,共24分) 23.(12分)如图,点E在以AB为直径的⊙O上,点C是 的中点,过点C作CD 垂直于AE,交AE的延长线于点D,连接BE交AC于点F. (1)求证:CD是⊙O的切线; (2)若cos∠CAD= ,BF=15,求AC的长. 【考点】ME:切线的判定与性质;T7:解直角三角形.菁优网版权所有 【分析】(1)连接OC,由点C是 的中点利用垂径定理可得出OC⊥BE,由AB 是⊙O的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC ⊥CD,由此即可证出CD是⊙O的切线. (2)过点O作OM⊥AC于点M,由点C是 的中点利用圆周角定理可得出∠BAC= ∠CAE,根据角平分线的定理结合cos∠CAD= 可求出AB的长度,在Rt△AOM 中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长 度.解法二:连接BC,在Rt△ABC中,解直角三角形即可解决问题; 【解答】(1)证明:连接OC,如图1所示. ∵点C是 的中点, ∴=,∴OC⊥BE. 第33页(共43页) ∵AB是⊙O的直径, ∴AD⊥BE, ∴AD∥OC. ∵AD⊥CD, ∴OC⊥CD, ∴CD是⊙O的切线. (2)解:过点O作OM⊥AC于点M,如图2所示. ∵点C是 的中点, ∴∴=,∠BAC=∠CAE, =.∵cos∠CAD= , = , ∴∴AB= BF=20. 在Rt△AOM中,∠AMO=90°,AO= AB=10,cos∠OAM=cos∠CAD= , ∴AM=AO•cos∠OAM=8, ∴AC=2AM=16. 解法二:如解图,连接BC, ∵AB为⊙O的直径, ∴∠ACB=90°, 由(1)知, ∴∠CAD=∠CAB, 又∵∠CAD=∠CBE, ∴∠CBE=∠CAB=∠CAD, ∴cos∠CBE=cos∠CAB=cos∠CAD= , 在Rt△ABC中,设AC=4k,AB=5k,由勾股定理,得BC=3k, 第34页(共43页) ∴3k=12,k=4, ∴AC=16. 【点评】本题考查了切线的判定与性质、解直角三角形、平行线的性质、垂径 定理、圆周角定理以及角平分线的性质,解题的关键是:(1)根据平行线 的性质找出OC⊥CD;(2)根据角平分线的性质求出AB的长度. 24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10 天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第 一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器 损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的 所有空调,平均每台成本就增加20元. (1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x 的取值范围. (2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每 台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂 哪一天获得的利润最大,最大利润是多少. 第35页(共43页) 【考点】HE:二次函数的应用.菁优网版权所有 【分析】(1)根据接到任务的第一天就生产了空调42台,以后每天生产的空调 都比前一天多2台,直接得出生产这批空调的时间为x天,与每天生产的空调 为y台之间的函数关系式; (2)根据基本等量关系:利润=(每台空调订购价﹣每台空调成本价﹣增加的 其他费用)×生产量即可得出答案. 【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空 调都比前一天多2台, ∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1 ≤x≤10); (2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800, ∵1840>0, ∴W随x的增大而增大, ∴当x=5时,W最大值=1840×5+36800=46000; 当5<x≤10时, W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080, 此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整 数, ∴当x=6时,W最大值=45760元. ∵46000>45760, ∴当x=5时,W最大,且W最大值=46000元. 综上所述:W= .第36页(共43页) 【点评】此题主要考查了二次函数的应用以及分段函数,如何分段,怎样表达 每个分段函数,并比较确定最大值是解本题的关键. 六、解答题(本题满分14分) 25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点 ,且EF⊥AB. (1)若四边形ABCD为正方形. ①如图1,请直接写出AE与DF的数量关系 DF= AE ; ②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数 量关系并说明理由; (2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点 B顺时针旋转α(0°<α<90°)得到△E’BF’,连接AE’,DF’,请在图3中画出草 图,并直接写出AE’与DF’的数量关系. 【考点】SO:相似形综合题.菁优网版权所有 【专题】15:综合题. 【分析】(1)①利用正方形的性质得△ABD为等腰直角三角形,则BF= AB, 再证明△BEF为等腰直角三角形得到BF= BE,所以BD﹣BF= AB﹣ BE, 从而得到DF= AE; ②利用旋转的性质得∠ABE=∠DBF,加上 ==,则根据相似三角形的判 第37页(共43页) 定可得到△ABE∽△DBF,所以 ==;(2)先画出图形得到图3,利用勾股定理得到BD= AB,再证明△BEF∽△ BAD得到 =,则 ==,接着利用旋转的性质得∠ABE′=∠DBF′ ,BE′=BE,BF′=BF,所以 ==,然后根据相似三角形的判定方法 得到△ABE′∽△DBF′,再利用相似的性质可得 【解答】解:(1)①∵四边形ABCD为正方形, ∴△ABD为等腰直角三角形, ==.∴BF= AB, ∵EF⊥AB, ∴△BEF为等腰直角三角形, BF= BE, ∴BD﹣BF= AB﹣ BE, 即DF= AE; 故答案为DF= AE; ②DF= AE.理由如下: ∵△EBF绕点B逆时针旋转到图2所示的位置, ∴∠ABE=∠DBF, ∵∴==,,=,∴△ABE∽△DBF, ∴==,即DF= AE; (2)如图3,∵四边形ABCD为矩形, ∴AD=BC=mAB, 第38页(共43页) ∴BD= =AB, ∵EF⊥AB, ∴EF∥AD, ∴△BEF∽△BAD, ∴∴==,=,∵△EBF绕点B顺时针旋转α(0°<α<90°)得到△E’BF’, ∴∠ABE′=∠DBF′,BE′=BE,BF′=BF, ∴==,∴△ABE′∽△DBF′, ∴==,即DF′= AE′. 【点评】本题考查了相似形的综合题:熟练掌握旋转的性质、矩形和正方形的 性质;灵活应用相似三角形的判定和性质,会利用相似比表示线段之间的关 系. 七、解答题(本题满分14分) 26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两 点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点, 过点P作PD⊥x轴于点D,交直线BC于点E. (1)求抛物线解析式; 第39页(共43页) (2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积; (3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点 ,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形 ?若存在,直接写出点N的坐标;若不存在,请说明理由. 【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】 【考点】HF:二次函数综合题.菁优网版权所有 【分析】(1)由抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物 线上,于是列方程即可得到结论; (2)根据函数解析式得到B(4,0),C(0,﹣2),求得BC的解析式为y= x ﹣2,设D(m,0),得到E(m, m﹣2),P(m, m2﹣ m﹣2),根据 已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5, ),E (5, ),根据三角形的面积公式即可得到结论; (3)设M(n, n﹣2),①以BD为对角线,根据菱形的性质得到MN垂直平分 BD,求得n=4+ ,于是得到N( ,﹣ );②以BD为边,根据菱形的性质 得到MN∥BD,MN=BD=MD=1,过M作MH⊥x轴于H,根据勾股定理列方程即 可得到结论. 【解答】解:(1)∵抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在 第40页(共43页) 抛物线上,∴ x﹣2; ,解得: ,抛物线解析式为y= x2﹣ (2)令y= x2﹣ x﹣2=0,解得:x1=﹣2,x2=4,当x=0时,y=﹣2,∴B(4,0 ),C(0,﹣2),设BC的解析式为y=kx+b,则 y= x﹣2, ,解得: ,∴ 设D(m,0), ∵DP∥y轴, ∴E(m, m﹣2),P(m, m2﹣ m﹣2), ∵OD=4PE, ∴m=4( m2﹣ m﹣2﹣ m+2), ∴m=5,m=0(舍去), ∴D(5,0),P(5, ),E(5, ), ∴四边形POBE的面积=S△OPD﹣S△EBD= ×5× ﹣ (3)存在,设M(n, n﹣2), ①以BD为对角线,如图1, 1× = ;∵四边形BNDM是菱形, ∴MN垂直平分BD, ∴n=4+ , ∴M( , ), ∵M,N关于x轴对称, ∴N( ,﹣ ); 第41页(共43页) ②以BD为边,如图2, ∵四边形BDMN是菱形, ∴MN∥BD,MN=BD=MD=1, 过M作MH⊥x轴于H, ∴MH2+DH2=DM2, 即( n﹣2)2+(n﹣5)2=12, ∴n1=4(不合题意),n2=5.6, ∴N(4.6, ), 同理( n﹣2)2+(4﹣n)2=1, ∴n1=4+ (不合题意,舍去),n2=4﹣ ,﹣ ), ,∴N(5﹣ ③以BD为边,如图3, 过M作MH⊥x轴于H, ∴MH2+BH2=BM2, 即( n﹣2)2+(n﹣4)2=12, ∴n1=4+ ∴N(5+ ,n2=4﹣ ), (不合题意,舍去), ,综上所述,当N( ,﹣ )或(4.6, )或(5﹣ ),以点B,D,M,N为顶点的四边形是菱形. ,﹣ )或(5+ ,第42页(共43页) 【点评】本题主要考查的是二次函数的综合应用,本题主要涉及了待定系数法 求一次函数、二次函数的解析式、勾股定理,三角形的面积公式、菱形的性 质、根据题意画出符合条件的图形是解题的关键. 第43页(共43页)
声明:如果本站提供的资源有问题或者不能下载,请点击页面底部的"联系我们";
本站提供的资源大部分来自网络收集整理,如果侵犯了您的版权,请联系我们删除。