2017年山东省滨州市中考数学试卷(含解析版)下载

2017年山东省滨州市中考数学试卷(含解析版)下载

  • 最近更新2023年07月17日






2017年山东省滨州市中考数学试卷 一、选择题(本大题共12个小题,每小题的四个选项中只有一个是正确的,把正确的选项 选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分) 1.(3分)计算﹣(﹣1)+|﹣1|,其结果为(  ) A.﹣2 B.2 C.0 D.﹣1 2.(3分)一元二次方程x2﹣2x=0根的判别式的值为(  ) A.4 B.2 C.0 D.﹣4 3.(3分)如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD 的平分线,那么下列结论错误的是(  ) A.∠BAO与∠CAO相等 C.∠BAO与∠ABO互余 D.∠ABO与∠DBO不等 4.(3分)下列计算:(1) =2,(2) )( )=﹣1,其中结果正确的个数为(  ) B.2 B.∠BAC与∠ABD互补 =2,(3)(﹣2 )2=12,(4) (+﹣A.1 C.3 D.4 5.(3分)若正方形的外接圆半径为2,则其内切圆半径为(  ) A. 6.(3分)分式方程 A.x=1 B.x=﹣1 C.无解 B.2 C. D.1 的解为(  ) D.x=﹣2 ﹣1= 7.(3分)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点, 且BD=BA,则tan∠DAC的值为(  ) A.2+ B.2 C.3+ D.3 8.(3分)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为 第1页(共23页) (  ) A.40° B.36° C.30° D.25° 9.(3分)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺 母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺 栓和螺母配套,则下面所列方程中正确的是(  ) A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x) 10.(3分)若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣(k2+2k+4)x+1(k为常数)的 图象上,则m和n的大小关系是(  ) A.m>n B.m<n C.m=n D.不能确定 11.(3分)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠M PN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)P M=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变; (4)MN的长不变,其中正确的个数为(  ) A.4 B.3 C.2 D.1 12.(3分)在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧), 并分别与直线y=x和双曲线y= 相交于点A、B,且AC+BC=4,则△OAB的面积为(  ) A.2 +3或2 ﹣3 B. +1或 ﹣1 C.2 ﹣3 D. ﹣1  二、填空题:本大题共6个小题,每小题4分,满分24分 +( ﹣3)0﹣|﹣ |﹣2﹣1﹣cos60°=  13.(4分)计算:  . 第2页(共23页) 14.(4分)不等式组 的解集为   . 15.(4分)在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原 点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的 对应点A的坐标为  16.(4分)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC 相交于点F,若AB=6,AD=8,AE=4,则△EBF周长的大小为 .  . 17.(4分)如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积 的大小为 . 18.(4分)观察下列各式 =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+ (n≥3且n为整数),其 结果为 .  三、解答题(共6小题,满分60分) 19.(8分)(1)计算:(a﹣b)(a2+ab+b2) (2)利用所学知识以及(1)所得等式,化简代数式 ÷.第3页(共23页) 20.(9分)根据要求,解答下列问题: ①方程x2﹣2x+1=0的解为 ; ②方程x2﹣3x+2=0的解为 ; ③方程x2﹣4x+3=0的解为 ; …(2)根据以上方程特征及其解的特征,请猜想: ①方程x2﹣9x+8=0的解为 ; ②关于x的方程 的解为x1=1,x2=n. (3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性. 21.(9分)为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测 得它们的株高(单位:cm)如下表所示: 63 63 66 65 63 60 61 63 64 64 61 63 甲乙(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐? (2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一 株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配 对小麦株高恰好都等于各自平均株高的概率. 第4页(共23页) 22.(10分)如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点 B、F为圆心,大于 BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连 接EF,则所得四边形ABEF是菱形. (1)根据以上尺规作图的过程,求证:四边形ABEF是菱形; (2)若菱形ABEF的周长为16,AE=4 ,求∠C的大小. 23.(10分)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点 D,连接BD,过点D作直线DM,使∠BDM=∠DAC. (1)求证:直线DM是⊙O的切线; (2)求证:DE2=DF•DA. 第5页(共23页) 24.(14分)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0 ,3),抛物线y=﹣x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数解析式; (2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d 关于x的函数解析式,并求d取最小值时点P的坐标; (3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值 . 第6页(共23页) 2017年山东省滨州市中考数学试卷 参考答案与试题解析  一、选择题(本大题共12个小题,在每小题的四个选项中只有一个是正确的, 请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小 题涂对得3分,满分36分) 1.(3分)(2017•滨州)计算﹣(﹣1)+|﹣1|,其结果为(  ) A.﹣2 B.2 C.0 D.﹣1 【解答】解:﹣(﹣1)+|﹣1| =1+1 =2, 故选B.  2.(3分)(2017•滨州)一元二次方程x2﹣2x=0根的判别式的值为(  ) A.4 B.2 C.0 D.﹣4 【解答】解:△=(﹣2)2﹣4×1×0=4. 故选A.  3.(3分)(2017•滨州)如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平 分线,那么下列结论错误的是(  ) A.∠BAO与∠CAO相等 B.∠BAC与∠ABD互补 C.∠BAO与∠ABO互余 D.∠ABO与∠DBO不等 【解答】解:∵AC∥BD, 第7页(共23页) ∴∠CAB+∠ABD=180°, ∵AO、BO分别是∠BAC、∠ABD的平分线, ∴∠BAO与∠CAO相等,∠ABO与∠DBO相等, ∴∠BAO与∠ABO互余, 故选D.  4.(3分)(2017•滨州)下列计算:(1) =2,(2) =2,(3) (﹣2 )2=12,(4)( +)( ﹣)=﹣1,其中结果正确的个数为 (  ) A.1 B.2 C.3 D.4 【解答】解::(1) =2, (2) =2, (3)(﹣2 )2=12, (4)( +)( ﹣)=2﹣3=﹣1. 故选D.  5.(3分)(2017•滨州)若正方形的外接圆半径为2,则其内切圆半径为(   )A. B.2 C. D.1 【解答】解:如图所示,连接OA、OE, ∵AB是小圆的切线, ∴OE⊥AB, ∵四边形ABCD是正方形, ∴AE=OE, ∴△AOE是等腰直角三角形, ∴OE= OA= .故选A. 第8页(共23页)  6.(3分)(2017•滨州)分式方程 ﹣1= 的解为(  ) A.x=1 B.x=﹣1 C.无解 D.x=﹣2 【解答】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3, 整理得:2x﹣x+2=3 解得:x=1, 检验:把x=1代入(x﹣1)(x+2)=0, 所以分式方程的无解. 故选C.  7.(3分)(2017•滨州)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延 长线上的一点,且BD=BA,则tan∠DAC的值为(  ) A.2+ B.2 C.3+ D.3 【解答】解:如图,∵在△ABC中,AC⊥BC,∠ABC=30°, ∴AB=2AC,BC= ∵BD=BA, =AC. ∴DC=BD+BC=(2+ )AC, ∴tan∠DAC= ==2+ .故选:A. 第9页(共23页)  8.(3分)(2017•滨州)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC ,BD=BA,则∠B的大小为(  ) A.40° B.36° C.30° D.25° 【解答】解:∵AB=AC, ∴∠B=∠C, ∵CD=DA, ∴∠C=∠DAC, ∵BA=BD, ∴∠BDA=∠BAD=2∠C=2∠B, 又∵∠B+∠BAD+∠BDA=180°, ∴5∠B=180°, ∴∠B=36°, 故选B.  9.(3分)(2017•滨州)某车间有27名工人,生产某种由一个螺栓套两个螺母 的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工 人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是 (  ) A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x) 【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母, ∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个, ∴可得2×22x=16(27﹣x). 故选D. 第10页(共23页)  10.(3分)(2017•滨州)若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣(k 2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是(  ) A.m>n B.m<n C.m=n D.不能确定 【解答】解:∵k2+2k+4=(k+1)2+3>0 ∴﹣(k2+2k+4)<0, ∴该函数是y随着x的增大而减少, ∵﹣7>﹣8, ∴m<n, 故选(B)  11.(3分)(2017•滨州)如图,点P为定角∠AOB的平分线上的一个定点,且 ∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相 交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变; (3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为(   )A.4 B.3 C.2 D.1 【解答】解:如图作PE⊥OA于E,PF⊥OB于F. ∵∠PEO=∠PFO=90°, ∴∠EPF+∠AOB=180°, ∵∠MPN+∠AOB=180°, ∴∠EPF=∠MPN, ∴∠EPM=∠FPN, ∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F, ∴PE=PF, 第11页(共23页) 在△POE和△POF中, ,∴△POE≌△POF, ∴OE=OF, 在△PEM和△PFN中, ,∴△PEM≌△PFN, ∴EM=NF,PM=PN,故(1)正确, ∴S△PEM=S△PNF ,∴S四边形PMON=S四边形PEOF=定值,故(3)正确, ∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确, MN的长度是变化的,故(4)错误, 故选B.  12.(3分)(2017•滨州)在平面直角坐标系内,直线AB垂直于x轴于点C(点 C在原点的右侧),并分别与直线y=x和双曲线y= 相交于点A、B,且AC+BC=4, 则△OAB的面积为(  ) A.2 +3或2 ﹣3B. +1或 ﹣1 C.2 ﹣3 D. ﹣1 【解答】解:如图所示:设点C的坐标为(m,0),则A(m,m),B(m, ), 所以AC=m,BC= . ∵AC+BC=4, 第12页(共23页) ∴可列方程m+ =4, 解得:m=2± .所以A(2+ ,2+ ),B(2+ ,2﹣ )或A(2﹣ ,2 ﹣),B(2﹣ ,2+ ), ∴AB=2 .∴△OAB的面积= ×2 ×(2± )=2 ±3. 故选:A.  二、填空题:本大题共6个小题,每小题4分,满分24分 13.(4分)(2017•滨州)计算: +( ﹣3)0﹣|﹣ |﹣2﹣1﹣cos60°=  ﹣ . 【解答】解:原式= +1﹣2 ﹣ ﹣ =﹣ .故答案为﹣ . 14.(4分)(2017•滨州)不等式组 的解集为 ﹣7≤x<1 . 【解答】解:解不等式x﹣3(x﹣2)>4,得:x<1, 解不等式 ,得:x≥﹣7, 则不等式组的解集为﹣7≤x<1, ≤第13页(共23页) 故答案为:﹣7≤x<1.  15.(4分)(2017•滨州)在平面直角坐标系中,点C、D的坐标分别为C(2, 3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的 对应点B在x轴上且OB=2,则点C的对应点A的坐标为 (4,6)或(﹣4,﹣6)  .【解答】解:如图, 由题意,位似中心是O,位似比为2, ∴OC=AC, ∵C(2,3), ∴A(4,6)或(﹣4,﹣6), 故答案为(4,6)或(﹣4,﹣6).  16.(4分)(2017•滨州)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落 在AB边上的E处,EQ与BC相交于点F,若AB=6,AD=8,AE=4,则△EBF周长的大 小为 8 . 第14页(共23页) 【解答】解:设AH=a,则DH=AD﹣AH=8﹣a, 在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a, ∴EH2=AE2+AH2,即(8﹣a)2=42+a2, 解得:a=3. ∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°, ∴∠BFE=∠AEH. 又∵∠EAH=∠FBE=90°, ∴△EBF∽△HAE, ∴=== . ∵C△HAE=AE+EH+AH=AE+AD=12, ∴C△EBF= C△HAE=8. 故答案为:8.  17.(4分)(2017•滨州)如图,一个几何体的三视图分别是两个矩形,一个 扇形,则这个几何体表面积的大小为 12+15π . 【解答】解:由几何体的三视图可得: 该几何体是长方体、两个扇形和一个矩形的组合体, 该组合体的表面积为:S=2×2×3+ ×2+ ×3=12+15π, 故答案为:12+15π.  18.(4分)(2017•滨州)观察下列各式: = ﹣ ; = ﹣ ; 第15页(共23页) = ﹣ ; …请利用你所得结论,化简代数式: +++…+ (n≥3且n为整 数),其结果为  【解答】解:∵ = ﹣ ,  . = ﹣ , = ﹣ , …∴= ( ﹣ ), ∴+++…+ = (1﹣ + ﹣ + ﹣ +…+ ﹣ )= (1+ ﹣﹣)= .故答案是:  .三、解答题(共6小题,满分60分) 19.(8分)(2017•滨州)(1)计算:(a﹣b)(a2+ab+b2) (2)利用所学知识以及(1)所得等式,化简代数式 ÷.【解答】解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3; (2)原式= =(m﹣n)• •=m+n.  20.(9分)(2017•滨州)根据要求,解答下列问题: ①方程x2﹣2x+1=0的解为 x1=x2=1 ; 第16页(共23页) ②方程x2﹣3x+2=0的解为 x1=1,x2=2 ; ③方程x2﹣4x+3=0的解为 x1=1,x2=3 ; …(2)根据以上方程特征及其解的特征,请猜想: ①方程x2﹣9x+8=0的解为 1、8 ; ②关于x的方程 x2﹣(1+n)x+n=0 的解为x1=1,x2=n. (3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性. 【解答】解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x1=x 2=1,; ②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2= 2,; ③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3; …(2)根据以上方程特征及其解的特征,请猜想: ①方程x2﹣9x+8=0的解为x1=1,x2=8; ②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n. (3)x2﹣9x=﹣8, x2﹣9x+ =﹣8+ (x﹣ )2= ,x﹣ =± , 所以x1=1,x2=8; 所以猜想正确. 故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;  21.(9分)(2017•滨州)为了考察甲、乙两种成熟期小麦的株高长势情况, 现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示: 第17页(共23页) 63 63 66 65 63 60 61 63 64 64 61 63 甲乙(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整 齐? (2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各 随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方 法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率. 【解答】解:(1)∵ ∴s甲2= ×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3; =63, ∴s乙2= ×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]= , ==63, ∵=22∵s乙 <s甲 , ∴乙种小麦的株高长势比较整齐; (2)列表如下: 63 66 63 61 64 61 63 65 60 63 64 63 63、63 63、65 63、60 63、63 63、64 63、63 66、63 66、65 66、60 66、63 66、64 66、63 63、63 63、65 63、60 63、63 63、64 63、63 61、63 61、65 61、60 61、63 61、64 61、63 64、63 64、65 64、60 64、63 64、64 64、63 61、63 61、65 61、60 61、63 61、64 61、63 由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平 均株高的有6种, ∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为 = .  22.(10分)(2017•滨州)如图,在▱ABCD中,以点A为圆心,AB长为半径画 弧交AD于点F,再分别以点B、F为圆心,大于 BF的相同长为半径画弧,两弧交 于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形. 第18页(共23页) (1)根据以上尺规作图的过程,求证:四边形ABEF是菱形; (2)若菱形ABEF的周长为16,AE=4 ,求∠C的大小. 【解答】解:(1)在△AEB和△AEF中, ,∴△AEB≌△AEF, ∴∠EAB=∠EAF, ∵AD∥BC, ∴∠EAF=∠AEB=∠EAB, ∴BE=AB=AF. ∵AF∥BE, ∴四边形ABEF是平行四边形, ∵AB=BE, ∴四边形ABEF是菱形; (2)如图,连结BF,交AE于G. ∵菱形ABEF的周长为16,AE=4 ,∴AB=BE=EF=AF=4,AG= AE=2,∠BAF=2∠BAE,AE⊥BF. 在直角△ABG中,∵∠AGB=90°, ∴cos∠BAG= ==,∴∠BAG=30°, ∴∠BAF=2∠BAE=60°. ∵四边形ABCD是平行四边形, ∴∠C=∠BAF=60°. 第19页(共23页)  23.(10分)(2017•滨州)如图,点E是△ABC的内心,AE的延长线交BC于点F ,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC. (1)求证:直线DM是⊙O的切线; (2)求证:DE2=DF•DA. 【解答】解:(1)如图所示,连接OD, ∵点E是△ABC的内心, ∴∠BAD=∠CAD, ∴=,∴OD⊥BC, 又∵∠BDM=∠DAC,∠DAC=∠DBC, ∴∠BDM=∠DBC, ∴BC∥DM, ∴OD⊥DM, ∴直线DM是⊙O的切线; (2)如图所示,连接BE, ∵点E是△ABC的内心, ∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE, ∴∠BAE+∠ABE=∠CBD+∠CBE, 即∠BED=∠EBD, ∴DB=DE, ∵∠DBF=∠DAB,∠BDF=∠ADB, ∴△DBF∽△DAB, ∴=,即DB2=DF•DA, ∴DE2=DF•DA. 第20页(共23页)  24.(14分)(2017•滨州)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴 交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数解析式; (2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距 离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标; (3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+ EF的最小值. 【解答】解: (1)由题意可得 ,解得 ,第21页(共23页) ∴直线解析式为y= x+3; (2)如图1,过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于 点Q, 则∠AHQ=∠ABO,且∠AHP=90°, ∴∠PHQ+∠AHQ=∠BAO+∠ABO=90°, ∴∠PHQ=∠BAO,且∠AOB=∠PQH=90°, ∴△PQH∽△BOA, ∴==,设H(m, m+3),则PQ=x﹣m,HQ= m+3﹣(﹣x2+2x+1), ∵A(﹣4,0),B(0,3), ∴OA=4,OB=3,AB=5,且PH=d, ∴== , 整理消去m可得d= x2﹣x+ = (x﹣ )2+ ,∴d与x的函数关系式为d= (x﹣ )2+ ∵ >0, ,∴当x= 时,d有最小值,此时y=﹣( )2+2× +1= ∴当d取得最小值时P点坐标为( ,); ,(3)如图2,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E 第22页(共23页) ,∴CE+EF=C′E+EF, ∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小, ∵C(0,1), ∴C′(2,1), 由(2)可知当x=2时,d= ×(2﹣ )2+ =,即CE+EF的最小值为 . 第23页(共23页)

分享到 :
相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注