2014年四川省宜宾市中考数学试卷(含解析版)下载

2014年四川省宜宾市中考数学试卷(含解析版)下载

  • 最近更新2023年07月16日






2014年四川省宜宾市中考数学试卷 一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一 项是符合题目要求的. 1.(3分)(2014•宜宾)2的倒数是( ) A BCD 2 .﹣±...2.(3分)(2014•宜宾)下列运算的结果中,是正数的是( )  A.(﹣2014)﹣1 B.﹣(2014)﹣1 C.(﹣1)×(﹣2014) D.(﹣2014)÷2014 3.(3分)(2014•宜宾)如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视 图是( ) A BCD....4.(3分)(2014•宜宾)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小 、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的 概率为(  A )BCD....5.(3分)(2014•宜宾)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是 ()x2+3x﹣2=0 x2﹣3x+2=0 x2﹣2x+3=0 x2+3x+2=0  A BCD....6.(3分)(2014•宜宾)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于 点B,则这个一次函数的解析式是( ) A y=2x+3 B y=x﹣3 C y=2x﹣3 D y=﹣x+3 ....7.(3分)(2014•宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,… An分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )( )n﹣1 n A n B n﹣1 CD....8.(3分)(2014•宜宾)已知⊙O的半径r=3,设圆心O到一条直线的距离为d,圆上到这 条直线的距离为2的点的个数为m,给出下列命题: ①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3;④若d=1,则m=2;⑤若d< 1,则m=4. 其中正确命题的个数是( )  A 1 B 2 C 4 D 5 ....二、填空题:本大题共8小题,每小题3分,共24分. 9.(3分)(2014•宜宾)分解因式:x3﹣x= .宾﹣•10.(3分)(2014 宜 )分式方程 =1的解是 .11.(3分)(2014•宜宾)如图,直线a、b被第三条直线c所截,如果a∥b,∠1=70°,那 么∠3的度数是 .12.(3分)(2014•宜宾)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较 长的对角线长度是 cm. 13.(3分)(2014•宜宾)在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度 得到点B,则点B关于x轴的对称点C的坐标是 14.(3分)(2014•宜宾)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折 叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= ..15.(3分)(2014•宜宾)如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切 线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、C B,若∠ABC=30°,则AM= .16.(3分)(2014•宜宾)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx •cosy+cosx•siny. 据此判断下列等式成立的是 (写出所有正确的序号) °①cos(﹣60 )=﹣ ; °②sin75 = ;③sin2x=2sinx•cosx; ④sin(x﹣y)=sinx•cosy﹣cosx•siny. 三、解答题(共8小题,满分72分)解答应写出文字说明,证明过程或演算步骤. ﹣117.(10分)(2014 宜 )(1) 算:|﹣2|﹣(﹣ )0+( ) 宾计•简(2)化 :( ﹣•).18.(6分)(2014•宜宾)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线 上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC. 19.(8分)(2014•宜宾)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了 A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随 机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统 计图回答下列问题: (1)这次被调查的学生共有 (2)请将统计图2补充完整. 人. (3)统计图1中B项目对应的扇形的圆心角是 度. (4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数. 20.(8分)(2014•宜宾)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对 得5分,答错或不答都扣3分. (1)小李考了60分,那么小李答对了多少道题? (2)小王获得二等奖(75~85分),请你算算小王答对了几道题? 21.(8分)(2014•宜宾)在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数, 则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记 为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4. (1)求出图中格点四边形DEFG对应的S,N,L. (2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应 的N=82,L=38,求S的值. 宾图图图•22.(10分)(2014 宜 )如 ,一次函数y=﹣x+2的 象与反比例函数y=﹣ 的 象交 轴于A、B两点,与x 交于D点,且C、D两点关于y 轴对 称. 标(1)求A、B两点的坐 ;(2)求△ABC的面积. 23.(10分)(2014•宜宾)如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于 点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F. (1)求证:直线EF是⊙O的切线; (2)若CF=5,cos∠A= ,求BE的长. 24.(12分)(2014•宜宾)如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x 轴交于A、B两点. (1)求抛物线的解析式; (2)判断△MAB的形状,并说明理由; (3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断M C、MD是否垂直,并说明理由. 2014年四川省宜宾市中考数学试卷  参考答案与试题解析 一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一 项是符合题目要求的. 1.(3分)(2014•宜宾)2的倒数是( ) A BCD 2 ﹣±....考点: 分析: 解答: 倒数. 根据乘积为1的两个数互为倒数,可得一个数的倒数. 解:2的倒数是 , 故选:A. 点评: 本题考查了倒数,分子分母交换位置是求一个数的倒数的关键 .2.(3分)(2014•宜宾)下列运算的结果中,是正数的是( )  A.(﹣2014)﹣1 B.﹣(2014)﹣1 C.(﹣1)×(﹣2014) D.(﹣2014)÷2014 负整数指数幂;正数和负数;有理数的乘法;有理数的除法. 分别根据负指数幂和有理数的乘除法进行计算求得结果,再判断 正负即可. 考点: 分析: 解答: 解:A、原式= B、原式=﹣ <0,故A错误; <0,故B错误; C、原式=1×2014=2014>0,故C正确; D、原式=﹣2014÷2014=﹣1<0,故D错误; 故选C. 点评: 本题主要考查了有理数的乘除法,负指数幂的运算.负整数指数 为正整数指数的倒数. 3.(3分)(2014•宜宾)如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视 图是( ) A BCD....简单组合体的三视图. 考点: 分析: 解答: 点评: 找到从上面看所得到的图形即可. 解:从上面看可得到左右相邻的3个矩形.故选D. 本题考查了三视图的知识,俯视图是从物体的上面看得到的视 图. 4.(3分)(2014•宜宾)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小 、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的 概率为(  A )BCD....考点: 专题: 分析: 解答: 概率公式. 应用题;压轴题. 让白球的个数除以球的总数即为摸到白球的概率. 解:6个黑球3个白球一共有9个球,所以摸到白球的概率是 .故选B. 点评: 本题考查了概率的基本计算,摸到白球的概率是白球数比总的 球数. 5.(3分)(2014•宜宾)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是 ()x2+3x﹣2=0 x2﹣3x+2=0 x2﹣2x+3=0 x2+3x+2=0  A BCD....考点: 分析: 根与系数的关系. 解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的 积是1×2=2.解题时检验两根之和 是否为3及两根之积 是否 为2. 解:两个根为x1=1,x2=2则两根的和是3,积是2. A、两根之和等于﹣3,两根之积却等于﹣2,所以此选项不正确 .解答: B、两根之积等于2,两根之和等于3,所以此选项正确. C、两根之和等于2,两根之积却等3,所以此选项不正确. D、两根之和等于﹣3,两根之积等于2,所以此选项不正确. 故选B. 点评: 验算时要注意方程中各项系数的正负. 6.(3分)(2014•宜宾)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于 点B,则这个一次函数的解析式是( ) A y=2x+3 B y=x﹣3 C y=2x﹣3 D y=﹣x+3 ....待定系数法求一次函数解析式;两条直线相交或平行问题. 根据正比例函数图象确定A点坐标再根据图象确定B点的坐标,设出一次函 数解析式,代入一次函数解析式,即可求出. 解:∵B点在正比例函数y=2x的图象上,横坐标为1, ∴y=2×1=2, 考点: 分析: 解答: ∴B(1,2), 设一次函数解析式为:y=kx+b, ∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交 于点B(1,2), ∴可得出方程组 ,解得 ,则这个一次函数的解析式为y=﹣x+3, 故选D. 点评: 此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一 次函数的特点,来列出方程组,求出未知数,即可写出解析式. 7.(3分)(2014•宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,… An分别是正方形的中心,则这n个正方形重叠部分的面积之和是( ) A n B n﹣1 CD( )n﹣1 n....正方形的性质;全等三角形的判定与性质 规律型. 考点: 专题: 分析: 根据题意可得,阴影部分的面积是正方形的面积的 ,已知两个 正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为( n﹣1)个阴影部分的和. 解答: 解:由题意可得一个阴影部分面积等于正方形面积的 ,即是 ×4 =1, 5个这样的正方形重叠部分(阴影部分)的面积和为:1×4, n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1) =n﹣1. 故选:B. 点评: 此题考查了正方形的性质,解决本题的关键是得到n个这样的正方 形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个 阴影部分的面积. 8.(3分)(2014•宜宾)已知⊙O的半径r=3,设圆心O到一条直线的距离为d,圆上到这 条直线的距离为2的点的个数为m,给出下列命题: ①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3;④若d=1,则m=2;⑤若d< 1,则m=4. 其中正确命题的个数是( )  A 1 B 2 C 4 D 5 ....直线与圆的位置关系;命题与定理. 考点: 分析: 根据直线与圆的位置关系和直线与圆的交点个数结合答案分析即 可得到答案. 解:①若d>5时,直线与圆相离,则m=0,正确; ②若d=5时,直线与圆相切,则m=1,故正确; ③若1<d<5,则m=3,正确; 解答: ④若d=1时,直线与圆相交,则m=2正确; ⑤若d<1时,直线与圆相交,则m=2,故错误. 故选C. 点评: 考查了直线与圆的位置关系,解题的关键是了解直线与圆的位置 关系与d与r的数量关系. 二、填空题:本大题共8小题,每小题3分,共24分. 9.(3分)(2014•宜宾)分解因式:x3﹣x= x(x+1)(x﹣1) . 提公因式法与公式法的综合运用. 压轴题. 本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平 考点: 专题: 分析: 方差公式分解. 解:x3﹣x, 解答: =x(x2﹣1), =x(x+1)(x﹣1). 点评:[来源:学科网ZXXK] 本题考查了提公因式法,公式法分解因式,先提取公因式后 再利用平方差公式继续进行因式分解,分解因式一定要彻底 .10.(3分)(2014•宜宾)分式方程 ﹣=1的解是 x=﹣1.5 . 考点: 专题: 分析: 解分式方程. 计算题. 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解:去分母得:x(x+2)﹣1=x2﹣4, 整理得:x2+2x﹣1=x2﹣4, 解答: 移项合并得:2x=﹣3 解得:x=﹣1.5, 经检验x=﹣1.5是分式方程的解. 故答案为:x=﹣1.5 点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思 想”,把分式方程转化为整式方程求解.解分式方程一定注 意要验根. 11.(3分)(2014•宜宾)如图,直线a、b被第三条直线c所截,如果a∥b,∠1=70°,那 么∠3的度数是 70° . 平行线的性质 考点: 分析: 根据两直线平行,同位角相等可得∠2=∠1,再根据对顶角相等可得∠3 =∠2. 解答: 解:∵a∥b, ∴∠2=∠1=70°, ∴∠3=∠2=70°. 故答案为:70°. 本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键 点评: .12.(3分)(2014•宜宾)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较 长的对角线长度是 5 cm. 菱形的性质;特殊角的三角函数值 根据菱形的对角线互相垂直且平分各角,可设较小角为x,因为邻角之和 为180°,∴x+2x=180°,所以x=60°,画出其图形,根据三角函数,可以得 到其中较长的对角线的长. 考点: 分析: 解:∵菱形的周长为20cm 解答: ∴菱形的边长为5cm ∵两邻角之比为1:2 ∴较小角为60° 画出图形如下所示: ∴∠ABO=30°,AB=5cm, ∵最长边为BD,BO=AB•cos∠ABO=5× ∴BD=2BO= =.点评: 本题考查了菱形的对角线互相垂直且平分各角,特殊三角函数的熟练掌握 .13.(3分)(2014•宜宾)在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度 得到点B,则点B关于x轴的对称点C的坐标是 (2,﹣2) . 坐标与图形变化-平移;关于x轴、y轴对称的点的坐标 首先根据横坐标,右移加,左移减可得B点坐标,然后再关于x轴对称点 的坐标特点可得答案. 考点: 分析: 解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2) ,即(2,2), 解答: 则点B关于x轴的对称点C的坐标是(2,﹣2), 故答案为:(2,﹣2). 点评: 此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关 键是掌握点的坐标变化规律. 14.(3分)(2014•宜宾)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折 叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= 1.5. 翻折变换(折叠问题) 考点: 首先根据折叠可得BE=EB′,AB′=AB=3,然后设BE=EB′=x,则EC =4﹣x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中, 由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案. 解:根据折叠可得BE=EB′,AB′=AB=3 分析:[来源:学科网] 解答: 设BE=EB′=x,则EC=4﹣x, ∵∠B=90°,AB=3,BC=4, ∴在Rt△ABC中,由勾股定理得, ,∴B′C=5﹣3=2, 在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2, 解得x=1.5. 故答案为:1.5. 点评: 此题主要考查了翻折变换,关键是分析清楚折叠以后哪些线段是相等的 .15.(3分)(2014•宜宾)如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切 线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、C B,若∠ABC=30°,则AM= .切线的性质 计算题. 考点: 专题: 分析: 连接OM,OC,由OB=OC,且∠ABC的度数求出∠BCO的度数,利用外 角性质求出∠AOC度数,利用切线长定理得到MA=AC,利用HL得到三角 形AOM与三角形COM全等,利用全等三角形对应角相等得到OM为角平 分线,求出∠AOM为30°,在直角三角形AOM值,利用锐角三角函数定义 即可求出AM的长. 解:连接OM,OC, 解答: ∵OB=OC,且∠ABC=30°, ∴∠BCO=∠ABC=30°, ∵∠AOC为△BOC的外角, ∴∠AOC=2∠ABC=60°, ∵MA,MC分别为圆O的切线, ∴MA=MC,且∠MAO=∠MCO=90°, 在Rt△AOM和Rt△COM中, ,∴Rt△AOM≌Rt△COM(HL), ∴∠AOM=∠COM= ∠AOC=30°, 在Rt△AOM中,OA= AB=1,∠AOM=30°, ∴tan30°= ,即 =,解得:AM= 故答案为: .[来源:学*科*网] 点评: 此题考查了切线的性质,锐角三角函数定义,外角性质,以及等腰三角形 的性质,熟练掌握切线的性质是解本题的关键. 16.(3分)(2014•宜宾)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx •cosy+cosx•siny. 据此判断下列等式成立的是 ②③④ (写出所有正确的序号) ①cos(﹣60°)=﹣ ; ②sin75°= ;③sin2x=2sinx•cosx; ④sin(x﹣y)=sinx•cosy﹣cosx•siny. 锐角三角函数的定义;特殊角的三角函数值. 新定义. 考点: 专题: 根据已知中的定义以及特殊角的三角函数值即可判断. 解:①cos(﹣60°)=cos60°= ,命题错误; 分析: 解答: ②sin75°=sin(30°+45°)=sin30°•cos45°+cos30°•sin45°= × +×=+=,命题正确; ③sin2x=sinx•cosx+cosx•sinx═2sinx•cosx,故命题正确; ④sin(x﹣y)=sinx•cos(﹣y)+cosx•sin(﹣y)=sinx•cosy﹣cosx•siny,命 题正确. 故答案是:②③④. 点评:[来源:学科网ZXXK] 本题考查锐角三角函数以及特殊角的三角函数值,正确理解题目中的定义是 关键. 三、解答题(共8小题,满分72分)解答应写出文字说明,证明过程或演算步骤. 17.(10分)(2014•宜宾)(1)计算:|﹣2|﹣(﹣ )0+( )﹣1 (2)化简:( ﹣)• .实数的运算;分式的混合运算;零指数幂;负整数指数幂. (1)分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质计算出各 数,再根据实数混合运算的法则进行计算即可; (2)根据分式混合运算的法则进行计算即可. 解:(1)原式=2﹣1+3 考点: 分析: 解答: =4; (2)原式= •=••==2a+12. 点评: 本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、绝对值 的性质是解答此题的关键. 18.(6分)(2014•宜宾)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线 上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC. 全等三角形的判定与性质;平行线的性质. 考点: 专题: 分析: 证明题. 根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE即 可. 证明:∵AD∥BC, ∴∠A=∠C, ∵AE=CF, 解答: ∴AE+EF=CF+EF, 即AF=CE, ∵在△ADF和△CBE中 ,∴△ADF≌△CBE(AAS), ∴AD=BC. 点评: 本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角 形全等的方法有:SAS、ASA、AAS、SSS. 19.(8分)(2014•宜宾)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了 A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随 机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统 计图回答下列问题: (1)这次被调查的学生共有 500 人. (2)请将统计图2补充完整. (3)统计图1中B项目对应的扇形的圆心角是 54 度. (4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数. 条形统计图;用样本估计总体;扇形统计图 考点: (1)利用C的人数÷所占百分比可得被调查的学生总数; (2)利用总人数减去其它各项的人数=A的人数,再补图即可; (3)计算出B所占百分比,再用360°×B所占百分比可得答案; (4)首先计算出样本中喜欢健美操的学生所占百分比,再利用样 本估计总体的方法计算即可. 分析: 解答: 解:(1)140÷28%=500(人), 故答案为:500; (2)A的人数:500﹣75﹣140﹣245=40; (3)75÷500×100%=15%, 360°×15%=54°, 故答案为:54; (4)245÷500×100%=49%, 3600×49%=1764(人). 点评: 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图, 从不同的统计图中得到必要的信息是解决问题的关键.条形统计图 能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体 的百分比大小. 20.(8分)(2014•宜宾)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对 得5分,答错或不答都扣3分. (1)小李考了60分,那么小李答对了多少道题? (2)小王获得二等奖(75~85分),请你算算小王答对了几道题? 一元一次不等式组的应用;一元一次方程的应用 (1)设小李答对了x道题,则有(20﹣x)道题答错或不答,根据答对题目 的得分减去答错或不答题目的扣分是60分,即可得到一个关于x的方程,解 方程即可求解; 考点: 分析: (2)先设小王答对了y道题,根据二等奖在75分~85分之间,列出不等式 组,求出y的取值范围,再根据y只能取正整数,即可得出答案. 解:(1)设小李答对了x道题. 解答: 依题意得 5x﹣3(20﹣x)=60. 解得x=15. 答:小李答对了16道题. (2)设小王答对了y道题,依题意得: ,解得: ≤y≤ ,即 ∵y是正整数, ∴y=17或18, 答:小王答对了17道题或18道题. 点评: 本题考查了一元一次方程的应用.利用方程解决实际问题的基本思路如下 :首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间 接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相 等关系列方程、求解、作答,即设、列、解、答. 21.(8分)(2014•宜宾)在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数, 则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记 为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4. (1)求出图中格点四边形DEFG对应的S,N,L. (2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应 的N=82,L=38,求S的值. 规律型:图形的变化类;三元一次方程组的应用 (1)理解题意,观察图形,即可求得结论; 考点: 分析: (2)根据格点多边形的面积S=N+aL+b,结合图中的格点三角形ABC及 格点四边形DEFG,建立方程组,求出a,b即可求得S. 解:(1)观察图形,可得S=3,N=1,L=6; 解答: (Ⅱ)根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得, ,解得a ,∴S=N+ L﹣1, 将N=82,L=38代入可得S=82+ ×38﹣1=100. 点评: 此题考查格点图形的面积变化与多边形内部格点数和边界格点数的关系, 从简单情况分析,找出规律解决问题. 宾图图图•22.(10分)(2014 宜 )如 ,一次函数y=﹣x+2的 象与反比例函数y=﹣ 的 象交 轴于A、B两点,与x 交于D点,且C、D两点关于y 标轴对 称. (1)求A、B两点的坐 ;(2)求△ABC的面积. 反比例函数与一次函数的交点问题 计算题. 考点: 专题: 分析: (1)根据反比例函数与一次函数的交点问题得到方程组 然后解方程组即可得到A、B两点的坐标; ,(2)先利用x轴上点的坐标特征确定D点坐标,再利用关于y轴对称的 点的坐标特征得到C点坐标,然后利用S△ABC=S△ACD+S△BCD进行计算 .解答: 解:(1)根据题意得 ,解方程组得 或,所以A点坐标为(﹣1,3),B点坐标为(3,﹣1); (2)把y=0代入y=﹣x+2得﹣x+2=0,解得x=2, 所以D点坐标为(2,0), 因为C、D两点关于y轴对称, 所以C点坐标为(﹣2,0), 所以S△ABC=S△ACD+S△BCD = ×(2+2)×3+ ×(2+2)×1 =8. 点评: 本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函 数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则 两者有交点,方程组无解,则两者无交点. 23.(10分)(2014•宜宾)如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于 点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F. (1)求证:直线EF是⊙O的切线; (2)若CF=5,cos∠A= ,求BE的长. 切线的判定 考点: 分析: (1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得 到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出 直线EF是⊙O的切线; (2)先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函 数的定义得到cos∠FOD= =,设⊙O的半径为R,解方程 = , 求出R= ,那么AB=2OD= ,解Rt△AEF,根据余弦函数的定义得 到cos∠A= =,求出AE= ,然后由BE=AB﹣AE即可求解. (1)证明:如图,连结OD. ∵CD=DB,CO=OA, ∴OD是△ABC的中位线, ∴OD∥AB,AB=2OD, ∵DE⊥AB, 解答: ∴DE⊥OD,即OD⊥EF, ∴直线EF是⊙O的切线; (2)解:∵OD∥AB, ∴∠COD=∠A. 在Rt△DOF中,∵∠ODF=90°, ∴cos∠FOD= =, 设⊙O的半径为R,则 解得R= ∴AB=2OD= 在Rt△AEF中,∵∠AEF=90°, ∴cos∠A= =, = , ,.=∴AE= ,∴BE=AB﹣AE= ﹣=2. 点评: 本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点 .要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即 为半径),再证垂直即可. 24.(12分)(2014•宜宾)如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x 轴交于A、B两点. (1)求抛物线的解析式; (2)判断△MAB的形状,并说明理由; (3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断M C、MD是否垂直,并说明理由. 二次函数综合题. 考点: 分析: (1)待定系数法即可解得. (2)由抛物线的解析式可知OA=OB=OC=1,得出∠AMO=∠MAO=∠B MO=∠BOM=45°从而得出△MAB是等腰直角三角形. (3)分别过C点,D点作y轴的平行线,交x轴于E、F,过M点作x轴的平 行线交EC于G,交DF于H,设D(m,m2﹣1),C(n,n2﹣1),通过FG ∥DH,得出 =,从而求得m、n的关系,根据m、n的关系,得出△C GM∽△MHD,即可求得结论. 解:(1)∵抛物线y=x2+bx+c的顶点坐标为M(0,﹣1), 解答: ∴b=0,c=﹣1, ∴抛物线的解析式为:y=x2﹣1. (2)△MAB是等腰直角三角形, 由抛物线的解析式为:y=x2﹣1可知A(﹣1,0),B(1,0), ∴OA=OB=OC=1, ∴∠AMO=∠MAO=∠BMO=∠BOM=45°, ∴∠AMB=∠AMO+∠BMO=90° ∵y轴是对称轴, ∴A、B为对称点, ∴AM=BM, ∴△MAB是等腰直角三角形. (3)MC⊥MF; 分别过C点,D点作y轴的平行线,交x轴于E、F,过M点作x轴的平行线交 EC于G,交DF于H, 设D(m,m2﹣1),C(n,n2﹣1), ∴OE=﹣n,CE=1﹣n2,OF=m,DF=m2﹣1, ∵OM=1, ∴CG=n2,DH=m2, ∵FG∥DH, ∴=,即=解得m=﹣ , ∵∴===﹣n, == , ,∵∠CGM=∠MHD=90°, ∴△CGM∽△MHD, ∴∠CMG=∠MDH, ∵∠MDH+∠DMH=90° ∴∠CMG+∠DMH=90°, ∴∠CMD=90°, 即MC⊥MF. 点评: 本题考查了待定系数法求解析式,等腰三角形的判定,三角形相似的判定 和性质,作出辅助线是本题的关键.

分享到 :
相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注